Green Chemistry Strategies for Drug Discovery
RSC Drug Discovery Series

Editor-in-Chief
Professor David Thurston, King’s College, London, UK

Series Editors:
Professor David Rotella, Montclair State University, USA
Professor Ana Martinez, Centro de Investigaciones Biologicas-CSIC, Madrid, Spain
Dr David Fox, Vulpine Science and Learning, UK

Advisor to the Board:
Professor Robin Ganellin, University College London, UK

Titles in the Series:
1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups
2: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 1
3: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 2
4: Accounts in Drug Discovery
5: New Frontiers in Chemical Biology
6: Animal Models for Neurodegenerative Disease
7: Neurodegeneration
8: G Protein-Coupled Receptors
9: Pharmaceutical Process Development
10: Extracellular and Intracellular Signaling
11: New Synthetic Technologies in Medicinal Chemistry
12: New Horizons in Predictive Toxicology
13: Drug Design Strategies: Quantitative Approaches
14: Neglected Diseases and Drug Discovery
15: Biomedical Imaging
16: Pharmaceutical Salts and Cocrystals
17: Polyamine Drug Discovery
18: Proteinases as Drug Targets
19: Kinase Drug Discovery
20: Drug Design Strategies: Computational Techniques and Applications
21: Designing Multi-Target Drugs
22: Nanostructured Biomaterials for Overcoming Biological Barriers
23: Physico-Chemical and Computational Approaches to Drug Discovery
24: Biomarkers for Traumatic Brain Injury
25: Drug Discovery from Natural Products
26: Anti-Inflammatory Drug Discovery
27: New Therapeutic Strategies for Type 2 Diabetes: Small Molecules
28: Drug Discovery for Psychiatric Disorders
29: Organic Chemistry of Drug Degradation
30: Computational Approaches to Nuclear Receptors
How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247,
Email: booksales@rsc.org
Visit our website at www.rsc.org/books
Green Chemistry Strategies for Drug Discovery

Edited by

Emily A. Peterson
Amgen, Stow, Massachusetts, USA
Email: epeterso@amgen.com

Julie B. Manley
Guiding Green LLC, Sanford, Michigan, USA
Email: Juliemanley@guidinggreen.com
Preface

Green Chemistry Strategies for Drug Discovery is authored largely by veterans of the pharmaceutical industry, primarily in discovery, to address the incorporation of green chemistry principles into the fast-paced environment of drug discovery. The purpose of the book is to provide actionable strategies, case studies, and tools as a practical guide for both academic and industrial laboratories wanting to know how to start introducing greener techniques and, importantly, where to channel efforts for greatest return on investment. Recognizing that the incorporation of green chemistry into drug discovery is perhaps hindered most by resistance to cultural change, many of the examples provided are aimed at achieving incremental improvements that lead to the largest positive outcomes. As such, we anticipate and hope that, in the future, the actions recommended in this book will become routine and there will be a readiness to incorporate innovative technologies and tackle new challenges aimed at making our science more sustainable.

This book acts as a resource that could be utilized in its entirety or as a reference by topic area. In addition to expected subjects such as reaction optimization, high-throughput screening, analysis, purification, and solvent selection, the book addresses burgeoning fields such as continuous processing in drug discovery and green chemistry in biological drug discovery. Chapters also provide unique perspectives on green chemistry as it relates to patent protection and the electronic lab notebook, as well as the business case for the incorporation of green chemistry specifically in the drug discovery phase of pharmaceutical research. The majority of chapters are written by authors with experience in the pharmaceutical industry who can speak from an informed position, not only about what should be done, but what in fact has been accomplished. All authors represent a wealth of experience in the chosen subject area, and we greatly appreciate their willingness to share their expertise in this book.
We would like to especially thank Dr Berkeley “Buzz” Cue, Jr for his invaluable insight, perspective, and time to share his expertise with us. As a silent partner throughout this process, he also knew when encouragement would be more effective than critique. He has directly and indirectly influenced a significant transition in the sustainability of the pharmaceutical industry, and we are honored to have his guidance and friendship.

Finally, we would like to thank our families for supporting us through the duration of this project, which took more time and focus away from the most important things in life. During the development of this book, we experienced the death of several close family members, but also the birth of a new generation. We know those who have passed would have been proud of this accomplishment, and are rewarded by knowing the book enables a more sustainable future for generations to come.

Emily A. Peterson and Julie B. Manley
Contents

Chapter 1 Introduction: The Five Ws of Pharmaceutical Green Chemistry 1
Julie B. Manley

1.1 Introduction 1
1.2 What is Green Chemistry? 1
1.3 Why Should the Pharmaceutical Industry Incorporate Green Chemistry? 3
1.4 Who is Doing Green Chemistry? 5
1.5 Where is Green Chemistry Being Applied? 7
1.6 When Should Green Chemistry be Implemented? 8
1.7 How is Green Chemistry Integrated into Drug Discovery? 9
References 10

Chapter 2 Barriers to Adopting Green Chemistry in Drug Discovery 13
Helen F. Sneddon

2.1 Introduction 13
2.2 Economic Barriers 14
 2.2.1 Solvents 15
 2.2.2 Reagents 16
 2.2.3 Recommendations for Overcoming Economic Barriers 16
2.3 Technical Barriers 17
 2.3.1 Recommendations for Overcoming Technical Barriers 19

RSC Drug Discovery Series No. 46
Green Chemistry Strategies for Drug Discovery
Edited by Emily A. Peterson and Julie B. Manley
© The Royal Society of Chemistry 2015
Published by the Royal Society of Chemistry, www.rsc.org
ix
2.4 Cultural Barriers
 2.4.1 Awareness of the 12 Principles within Drug Discovery 19
 2.4.2 Awareness of the 12 Principles in the Wider Chemistry Community 29
 2.4.3 Communication, within Drug Discovery and Beyond 30
 2.4.4 Definitions and Metrics 32
 2.4.5 Recommendations for Embedding a Green Chemistry Culture within Drug Discovery 33

2.5 Opportunities 34

References 35

Chapter 3 Toward a Green Laboratory: One Reaction at a Time 39
Leanna E. Shuster and Aniko M. Redman

3.1 Introduction 39
3.2 Synthetic Route Design 40
3.3 Planning Your Reaction 42
 3.3.1 Solvent Choices 42
 3.3.2 Reagent and Methodology Choices 50
3.4 Reaction Setup 55
3.5 Reaction Workup 58
3.6 Purification and Waste 60
3.7 Conclusion 60
References 60

Chapter 4 Greener Solvent Usage for Discovery Chemistry Analysis and Purification 66
Larry Miller and Emily A. Peterson

4.1 Introduction 66
4.2 SFC versus HPLC for Chiral and Achiral Separations 67
 4.2.1 SFC Introduction 67
 4.2.2 SFC for Chiral Analysis/Purification 69
 4.2.3 SFC for Achiral Analysis/Purification 70
4.3 Optimization of Analytical LC/MS Conditions for Reaction Monitoring/Final QC 73
4.4 Optimizing Reverse Phase Purifications 76
4.5 Greener Solvent Alternatives and Solvent Reduction for Flash Purification 81
 4.5.1 Flash Purification Introduction 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.2 Reduction of Organic Solvent Use During Silica Gel Chromatography</td>
<td>82</td>
</tr>
<tr>
<td>4.5.3 Reducing Dichloromethane (DCM) Usage</td>
<td>83</td>
</tr>
<tr>
<td>4.5.4 Measuring Progress in Solvent Reduction and DCM Replacement</td>
<td>86</td>
</tr>
<tr>
<td>4.6 Flash SFC as Alternative to LC Based Flash Purification</td>
<td>88</td>
</tr>
<tr>
<td>4.7 Conclusion</td>
<td>91</td>
</tr>
<tr>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>

Chapter 5 Green Chemistry and High Throughput Screening
Paul Richardson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>5.2 Screening in Medicinal Chemistry</td>
<td>95</td>
</tr>
<tr>
<td>5.3 Setting up a Reaction Screen</td>
<td>97</td>
</tr>
<tr>
<td>5.3.1 Workflow of Screening</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2 How Low Can You Go? Material Requirements</td>
<td>97</td>
</tr>
<tr>
<td>5.3.3 Reaction Design – Coverage of Chemical Space</td>
<td>99</td>
</tr>
<tr>
<td>5.3.4 Strategies for Screening for Greener Solutions</td>
<td>103</td>
</tr>
<tr>
<td>5.3.5 Data Capture, Analysis, and Visualization</td>
<td>106</td>
</tr>
<tr>
<td>5.4 Case Studies in Reaction Screening</td>
<td>108</td>
</tr>
<tr>
<td>5.4.1 Case Study 1 – Amide Bond Formation</td>
<td>108</td>
</tr>
<tr>
<td>5.4.2 Case Study 2 – Suzuki Couplings</td>
<td>110</td>
</tr>
<tr>
<td>5.5 Biotransformations</td>
<td>117</td>
</tr>
<tr>
<td>5.6 Screening Gaseous/Heterogeneous Reactions</td>
<td>119</td>
</tr>
<tr>
<td>5.7 Resolutions/Purifications and Purges</td>
<td>121</td>
</tr>
<tr>
<td>5.8 Capturing Information/Conclusions</td>
<td>124</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>124</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
</tbody>
</table>

Chapter 6 Continuous Processing in Drug Discovery
Katherine Belecki and B. Frank Gupton

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>6.2 Green Process Strategies</td>
<td>128</td>
</tr>
<tr>
<td>6.2.1 Process Intensification</td>
<td>128</td>
</tr>
<tr>
<td>6.2.2 Telescoping Operations</td>
<td>129</td>
</tr>
</tbody>
</table>
Chapter 7 Applying Green Chemistry Principles in Biologics
Drug Development
Kristi L. Budzinski

7.1 Introduction
7.1.1 Principles for Green Biologics
7.1.2 Producing Biologics
7.1.3 Microbial Fermentation
7.2 Environmental Assessment of Biologics Development
7.3 Implementing Green Biologics Principles
7.3.1 Research and Development
7.3.2 Production Considerations
7.3.3 Facilities and Technology Support
7.4 Metrics and Modeling Needs
7.5 Conclusion
Acknowledgements
References

Chapter 8 Recycling and Reuse in the Laboratory
Daniel T. Richter

8.1 Introduction: Recycling and Reuse in the Laboratory
8.2 Solvents
Chapter 9 The Need for a Green Electronic Lab Notebook 185
Alex M. Clark and Sean Ekins

9.1 Introduction 185
9.2 Methods 188
 9.2.1 Chemical Structures 189
 9.2.2 Chemical Reactions 193
 9.2.3 Implementation 199
 9.2.4 Example Products 203
9.3 Conclusion 207
References 208

Chapter 10 Toxicology for Chemical Safety and Sustainability 212
Nicholas D. Anastas

10.1 Toxicology and Sustainable Chemistry 212
 10.1.1 Principles of Toxicology 212
 10.1.2 Disposition of Toxicants in Organisms 216
 10.1.3 Linking Toxicology with Sustainability 221
10.2 Green Chemistry 222
 10.2.1 Expanding Green Chemistry Principle Number Four 222
 10.2.2 Green Toxicology 223
10.3 The Role of Modern (Twenty-first Century) Toxicology in Designing Safer Chemicals 223
 10.3.1 Tools for Designing Safer Chemicals 224
 10.3.2 The Role of Pharmaceutical and Medicinal Chemistry 224
10.4 Hierarchy of Knowledge 225
 10.4.1 Mechanistic Data: Tier 1 225
 10.4.2 Quantitative Structure–Activity Relationships (QSAR): Tier 2 227
Chapter 11 Environmental Regulations and the Green Chemist

David Taylor

11.1 Introduction
 11.1.1 Regulation of Good Practice
 11.1.2 The Development of Environmental Regulations
 11.1.3 Environmental Regulation and the Medicinal Chemist

11.2 Research & Development
 11.2.1 Regulations in the Laboratory
 11.2.2 Greening the Product
 11.2.3 Greening the Process
 11.2.4 Pilot Scale Manufacture

11.3 Manufacturing
11.4 Products and Patients
11.5 A Look to the Future

References
CHAPTER 1

Introduction: The Five Ws of Pharmaceutical Green Chemistry

JULIE B. MANLEY

Guiding Green LLC, 457 E. Mier Road, Sanford, MI 48657, USA
Email: juliemanley@GuidingGreen.com

1.1 Introduction

Louis Pasteur said, “Chance favors the prepared mind.” This chapter is designed to prepare the reader with the foundation upon which to build green chemistry into the business of drug discovery. Understanding green chemistry and its importance is a starting point, and being able to communicate it to the target audience is a necessity. By reviewing pharmaceutical green chemistry in the context of the essential journalism questions nicknamed the Five Ws (What? Why? Who? Where? When?), this chapter will provide an intentionally succinct perspective to act as the infrastructure for the invaluable chapters to follow. The Five Ws will prepare the reader to integrate green chemistry into drug discovery, and make successful integration more seamless and effective.

1.2 What is Green Chemistry?

First and foremost, green chemistry is chemistry, the scientific discipline of arranging molecules to create new materials and products; yet its focus is on the intentional integration of source and hazard reduction into the design of...
matter. By focusing on the design of materials at the molecular level, innovations are more efficient, cost-effective, safer, and environmentally preferable. Historically, environmental benefits were a side effect of optimizing efficiency and minimizing cost. Green chemistry turns that notion on its head and says that by intentionally designing a more sustainable process, the business needs will be met and even exceeded.

Green chemistry is commonly defined as the design of chemical processes and products to minimize the use and/or generation of hazardous materials.\(^1\) It is further clarified by a set of principles intended to provide a cohesive framework for the design of chemicals with reduced intrinsic hazard. The 12 principles begin with the recognition that it is more efficient to prevent waste from being generated in the first place than to treat it later (Principle 1). It is also more cost-effective to do so; the materials being purchased would be consumed rather than incurring a second cost on the same material for disposal. The principles address all aspects of the chemical lifecycle from the selection of safer materials (Principle 5 and Principle 12), renewably sourced where feasible (Principle 7), and their efficient use in the process (Principle 2). In the design of the chemistry, the principles emphasize the use of less hazardous chemical syntheses (Principle 3), reducing the need for derivatives (Principle 8), using catalysis where possible (Principle 9), incorporating real-time process monitoring (Principle 11), and minimizing energy use by considering ambient conditions when feasible (Principle 6). The principles also address end user considerations including designing the product to be effective while minimizing toxicity (Principle 4). Finally, in consideration of the end of the product life, the principles address the need to design for safe degradation in the environment (Principle 10). While some of these principles may not seem relevant to the drug discovery setting, decisions made in discovery can ultimately have a significant impact on the marketed product. The following chapters are intended to provide the reader with a more thorough understanding of their practical implementation in drug discovery.

For the current purposes, it is important to recognize the implicit challenge with implementing the 12 Principles in their entirety in any one process, and to appreciate this challenge not as a hindrance, but as an opportunity to continue to innovate.\(^2\) Even technologies recognized with the US Presidential Green Chemistry Challenge Award rarely, if ever, meet all 12 principles at any one time. Similarly, a process recognized as an effective implementation of green chemistry could also be further improved as evidenced by Merck’s sitagliptin, the active ingredient in Januvia™, being recognized in both 2006 and 2010 (with Codexis) with the Presidential Green Chemistry Challenge Award.\(^3\) The principles are a framework upon which to design, and to make informed decisions when a trade off between principles is inevitably needed.

One could argue that green chemistry is less a scientific field than it is specification for performance characteristics. Green chemistry describes how to incorporate design for the environment into current scientific methods. In 2005, metathesis was recognized with the Nobel Prize in Chemistry as a “great step forward for green chemistry”.\(^4\) The technology
received the highest honor globally in chemistry, not an environmental award, not a green chemistry award. Green chemistry is about doing chemistry more efficiently, safer, and more cost-effectively than it is now. Medicinal chemists, process chemists, analytical chemists, biochemists, and so on are not green chemists; they are scientists in their respective disciplines doing green chemistry. Job descriptions are not written to hire a green chemist per se; they seek qualified candidates able to perform the essential job functions. Arguably, knowledge of green chemistry, in addition to the targeted education and experience, assures the person is capable of utilizing his or her expertise to design and synthesize medicines efficiently, while minimizing cost and environmental impact, thereby meeting the short- and long-term goals of the company. Green chemistry is not a scientific field unto itself; it is the intentional integration of source and hazard reduction into chemistry. Paul Anastas, one of the fathers of green chemistry, has himself even been quoted, “I always say that we will know when green chemistry was successful when the term green chemistry goes away because that is simply the way that we always do chemistry.”

1.3 Why Should the Pharmaceutical Industry Incorporate Green Chemistry?

Sustainability, defined as meeting the needs of today without compromising the ability of future generations to meet their needs, was once a more commonly used vocabulary word for long-term financial stability than environmental stewardship. For the past 30 years, stability is not a term many would use to describe the pharmaceutical industry. Mergers and acquisitions have reduced what was once 110 companies to about 30 companies today, and that number is continually changing even as this book is being published. Figure 1.1 illustrates the history of AstraZeneca and Pfizer as examples to demonstrate the effect of mergers and acquisitions. At the time of writing, these two companies were engaged in communications for a possible merger.

R&D spending has been on the rise with approximately $51.1 billion spent in 2013, as compared to half that amount in 2000, and $1.2B in 1980, yet only two of ten marketed drugs return revenues that match or exceed the R&D costs. Restructuring has become the norm to manage these challenges. Whether it is outsourcing R&D or production, or spinning off companies like the Abbott surprising spin off of the R&D segment resulting in the creation of AbbVie, companies are downsizing and decreasing R&D spending throughout the industry. Lilly projected R&D spending to decrease 15–20% and Merck reduced headcount by 20% in 2013–2014 and minimized risk by acquiring experimental drugs. Companies need to do more with less, and green chemistry provides more for less. It is well established that the pharmaceutical industry generates a substantial amount of waste per kilogram of active pharmaceutical ingredient produced. Estimates indicate an average of over 100 kg material is used per kg
product produced (and even in the thousands for pre-clinical processes). With green chemistry, this has been shown to decrease to \(\sim 20 \) kg and even as low as single digits for some commercial processes. By utilizing the 12 principles, materials are used more efficiently, generating less waste and fewer hazards, lowering the standard cost for an active pharmaceutical ingredient. The use of green chemistry principles in drug discovery results in a faster production cycle time, which creates a competitive advantage.

Chemistry and innovation are the core of the pharmaceutical business. Bringing these together to discover and develop safe and effective medicines to help improve lives of patients is the objective. Achieving this goal cost-effectively with minimal environmental impact is the requirement. Green chemistry is the mechanism to meet these needs; it is an innovative, non-regulatory, economically driven approach toward sustainability:

\[\text{“The core of what we do here is to define transformative medicine that will help the patient. The goal is doing chemistry that gives equal or better results and in a way that benefits the environment.”} \]

– Bruce Roth, Vice President, Drug Discovery, Genentech