NONINVASIVE IMAGING OF CARDIAC METABOLISM
DEVELOPMENTS IN CARDIOVASCULAR MEDICINE

Recent volumes

NONINVASIVE IMAGING OF CARDIAC METABOLISM

Single Photon Scintigraphy, Positron Emission Tomography and Nuclear Magnetic Resonance

edited by

E.E. VAN DER WALL

Department of Diagnostic Radiology, Yale University
New Haven, Connecticut, U.S.A.

Department of Cardiology
Leiden University, The Netherlands
To my father
For Barbara
Table of contents

Preface / F.J.Th. WACKERS

List of contributors

Introduction / E.E. van der WALL

1. Radiopharmaceuticals for cardiovascular nuclear medicine
 D.R. ELMALEH, E.E. van der WALL, E. LIVNI, D. MILLER and
 H.W. STRAUSS

2. Myocardial imaging with radiolabeled free fatty acids: current views
 E.E. van der WALL

3. Chain-modified radioiodinated fatty acids
 C.A. OTTO

4. Uptake and distribution of radioiodinated free fatty acids in the dog
 heart
 G. WESTERA, F.C. VISSEER and E.E. van der WALL

5. Iodinated free fatty acids: reappraisal of methodology
 M.J. van EENIGE, F.C. VISSEER, C.M.B. DUWEL and J.P. ROOS

6. Experimental studies on myocardial metabolism of iodinated fatty a-
 cids: a proposal for a new curve analysis technique
 M. COMET

7. Radioiodinated free fatty acids: a clue to myocardial metabolism?
 F.C. VISSEER and G. WESTERA

8. Cardiac metabolism of I-123 phenyl-pentadecanoic acid
 S.N. RESKE
9. The development of radioiodinated 3-methyl-branched fatty acids for evaluation of myocardial disease by single photon techniques

10. Progress in cardiac positron emission tomography with emphasis on carbon-11 labeled palmitate and oxygen-15 labeled water
K.A.A. FOX, R.M. KNABB, S.R. BERGMANN and B.E. SOBEL

11. Assessment of glucose utilization in normal and ischemic myocardium with positron emission tomography and 18F-deoxyglucose
C.M. de LANDSHEERE

12. Nuclear magnetic resonance spectroscopy in experimental cardiology
C.J.A. van ECHTELD and T.J.C. RUIGROK

13. Nuclear magnetic resonance spectroscopy: its present and future application to studies of myocardial metabolism
E. BARRETT, R. ZAHLER and M. LAUGHLIN

14. Metabolic imaging: PET or NMR
A.M.J. PAANS and W. VAALBURG

Index of subjects
Preface

F.J.Th. WACKERS

Metabolic imaging: The future of cardiovascular nuclear imaging?

Since cardiovascular nuclear imaging emerged as a new subspeciality in the mid-1970s, the field has gone through an explosive growth. Radionuclide techniques became readily recognized as important new diagnostic aids in the armamentarium of the clinical cardiologist. Initially, cardiovascular nuclear imaging focused on static myocardial imaging using either thallium-201 or technetium-99m-pyrophosphate for diagnosing acute myocardial infarction. Shortly thereafter, multigated equilibrium radionuclide angiocardiology became the most widely used noninvasive method for assessing cardiac function. Furthermore, attention and clinical application shifted towards the use of radionuclide techniques in conjunction with exercise testing, either with thallium-201 myocardial perfusion imaging or technetium-99m left ventricular function studies. The future of cardiovascular nuclear imaging appeared exciting and promising. However, around 1980 pessimists predicted the premature demise of cardiovascular nuclear imaging with the introduction of digital subtraction angiography and nuclear magnetic resonance imaging. These doomsayers have been proven wrong: in 1985 cardiovascular nuclear imaging is thriving and, in many centers, even expanding. Although digital subtraction angiography and magnetic resonance imaging provided exquisite anatomic detail, for practical evaluation of patients with ischemic heart disease — in the Coronary Care Unit or exercise laboratory — nuclear techniques appeared to be more practical.

Presently, the clinical usefulness of equilibrium radionuclide angiocardiology in patients with acute myocardial infarction or chronic cardiac disease is well established. In addition, a number of studies have demonstrated that nuclear techniques have great value in providing functional and prognostic information in ischemic heart disease.

Rather than aiming at further improvement of image resolution for providing greater anatomic detail, radionuclide methods are to be used for which they are uniquely suited: detection of (rapid) changes in count densities. Rapid
assessment of left ventricular function during exercise and acute interventions by first-pass angiocardiography, or assessment of myocardial perfusion at exercise by planar or tomographic thallium-201 imaging are typical applications of radionuclide techniques that cannot be duplicated by other noninvasive methods.

Another most appropriate use of radioactive tracers, the subject of this monograph, appears to be labeling of natural substrates of myocardial metabolism. The fascinating promise of metabolic imaging is the possibility to explore the fundamental metabolic aspects of the various diseases. The important clinical issue of differentiating between reversible and irreversible myocardial ischemia probably can only be answered unequivocally by monitoring radiolabeled substrates of metabolism. Furthermore, it is conceivable that, in particular in cardiomyopathies metabolic imaging will provide important new insights. Initially, imaging of myocardial metabolism appeared to be the exclusive domain of positron emission tomography. However, more recently, investigators have been successful in developing radioiodine labeled substrates that can be imaged using conventional gamma cameras.

In the present volume Dr. van der Wall has succeeded in bringing together the authoritative expertise of several of the pioneers and leaders in the field of myocardial metabolic imaging. The emphasis of most work is on radiolabeled free fatty acids and radiolabeled glucose, but also nuclear magnetic spectrometry of metabolic processes is being discussed. Free fatty acids are a key substrate in myocardial metabolism for production of adenosine triphosphate. Although myocardial accumulation of various iodine-labeled compounds of free fatty acids can be imaged with the conventional gamma camera, it is evident that substantial work still needs to be done in evaluating the relationship between uptake and clearance of labeled free fatty acid and whether they accurately reflect myocardial free fatty acid metabolism. The present volume provides a particularly useful and timely overview for those working in the field of nuclear cardiology, interested in myocardial metabolic imaging. Nuclear techniques are indeed uniquely suited to explore the pathophysiology of myocardial metabolism in a variety of myocardial diseases. As such, metabolic imaging is one of the most promising and exciting new directions in cardiovascular nuclear imaging.
List of contributors

Barrett, E.J.,
Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA
Co-authors: R. Zahler and M. Laughlin

Comet, M.,
Laboratory of Medical Biophysics, Grenoble University Hospital, Domaine de la Merci, 38799 Le Tronche, Grenoble, France

De Landsheere, C.M.,
Cyclotron Research Center, Liege University, Bât 830 Sart Tilman, B-4000 Liege, Belgium

Elmaleh, D.R.,
Department of Nuclear Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
Co-authors: E.E. van der Wall, E. Livni, D. Miller and H.W. Strauss

Fox, K.A.A.,
Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 63110, St. Louis, MO 63110, USA. Co-authors: R.M. Knabb, S.R. Bergmann and B.E. Sobel

Knapp, F.F.,
Nuclear Medicine Group, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge TN 37831, USA
Co-authors: K.R. Ambrose, P. Angelberger, A.B. Brill, R. Dudczak, M.M.
Goodman, K. Kubota, R. Schmoliner, P. Som, K. Yamamoto and Y. Yonekura

Otto, C.A.,
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128 USA

Paans, A.M.J.,
Department of Nuclear Medicine, Groningen University Hospital, Oostersingel 59, 9713 EZ Groningen, The Netherlands
Co-author: W. Vaalburg

Reske, S.N.,
Institute for Clinical and Experimental Nuclear Medicine, Bonn University, Sigmund Freud Strasse 25, D-5300 Bonn 1, FRG

Van der Wall, E.E.,
Department of Diagnostic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
presently at: Department of Cardiology, Leiden University Hospital, Rijnburgerweg 10, 2333 AA Leiden, The Netherlands

Van Echteld, C.J.A.,
Laboratory of Experimental Cardiology, Interuniversity Cardiology Institute, Utrecht University Hospital, Catharijnesingel 101, 3511 GV Utrecht, The Netherlands
Co-author: T.J.C. Ruigrok

Van Eenige, M.J.,
Department of Cardiology, Free University of Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
Co-authors: F.C. Visser, C.M.B. Duwel and J.P. Roos

Visser, F.C.,
Department of Cardiology, Free University of Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
Co-author: G. Westera

Wackers, F.J.Th.,
Department of Diagnostic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA