To Begoña, Pablo, Santiago, Maria, Laura, Lucas, and Cecilia
the reason for my existence and to Joel C. Eissenberg, who taught me
how to do science
CONTENTS

Preface xv

Contributors xvii

1 MOLECULAR PATHOLOGY AND DRUG DEVELOPMENT 1

Franz Fogt and J. Suso Platero

1.1. General Pathology 1

1.2. General Aspects 2

1.3. Molecular Pathology, the Molecular Way 2

1.3.1. Loss of Gene Expression 3

1.3.2. Translocations 5

1.3.3. Detection of Pathogens 5

1.3.4. Forensic Identification 6

1.3.5. Protein Changes 7

1.3.6. Other Methods of Detection 8

1.4. Application of Molecular Pathology 8

1.5. Molecular Pathology in Drug Development 10

1.5.1. Most Important Molecular Pathologic Consideration 11

1.6. Pharmaceutical Drug Development 12

1.6.1. Introduction 12

1.6.2. Drug Discovery and Development 12

References 18

2 MOLECULAR PATHOLOGY IN ONCOLOGY TARGET AND DRUG DISCOVERY 21

Rolf-P. Ryseck, Ricardo Attar, Matthew V. Lorenzi, and Brent A. Rupnow

2.1. Introduction 21

2.2. History of Chemotherapy and Cancer Drug Discovery 22

2.3. Target-Based Drug Discovery 26

2.4. Utilization of Molecular Pathology in the Discovery of Novel Cancer Targets 29
2.5. Hit Identification and In Vitro Lead Optimization

2.6. Implications for Molecular Pathology in Cancer Drug Development and Use

2.7. Summary and Future Considerations

References

3. MOLECULAR PATHOLOGY AND TRANSCRIPTIONAL PROFILING IN EARLY DRUG DEVELOPMENT

Cornelia Liedtke, Lajos Pusztai, and W. Fraser Symmans

3.1. Introduction

3.2. Biomarkers in Clinical Setting and in Early Drug Development

3.3. Advantages of Biomarker Implementation

3.4. Changing Paradigm in Clinical Drug and Biomarker Development

3.5. Promises of Transcriptional Profiling

3.6. Biomarker Development and Validation Using Microarray Analysis

3.7. Neoadjuvant Chemotherapy as an Intriguing Model for Biomarker Development

3.8. Transcriptional Profiling for Identification of Individual Genes as Biomarkers

3.9. Transcriptional Profiling for the Definition of Multigene Predictors Using Transcriptional Profiling

3.9.1. Multigene Predictors of Chemotherapy Response

3.9.2. Multigene Predictor of Response to a Targeted Therapy Agent

3.9.3. Novel Approaches to Phase II Clinical Trial Design

3.10. Novel Tools for Pathway Analysis

3.11. Implementation of Biomarkers into the Clinical Setting

3.12. Conclusion

References

4. MOLECULAR PATHOLOGY IN NONCLINICAL SAFETY ASSESSMENT

Richard A. Westhouse

4.1. Introduction

4.2. Drug Development

4.2.1. Immunohistochemistry in Drug Development
4.3. Drug Discovery 92
 4.3.1. Target Validation and Target-Related Safety Concerns 92
 4.3.2. Off-Target Effects 96
4.4. Biopharmaceuticals 106
4.5. Summary 109
References 109

5 TOXICOGENOMICS IN DRUG DEVELOPMENT 111
Wayne R. Buck and Eric A. G. Blomme

5.1. Introduction 111
5.2. Brief Overview of Large-Scale Gene Expression Technologies 113
 5.2.1. RNA Quality 113
 5.2.2. Hybridization Platforms 114
5.3. Analysis of Microarray Data 117
 5.3.1. Normalization and Filtering 117
 5.3.2. Analyzing for Differences between Experimental Samples 118
 5.3.3. Familywise Error Rate 119
 5.3.4. Resampling 119
 5.3.5. Expression Profile Analysis 120
 5.3.6. Pathway Analysis 120
 5.3.7. Gene Expression Databases 121
 5.3.8. Analyzing Relatedness of Gene Expression Profiles 121
5.4. Application of Toxicogenomics in Drug Development 127
 5.4.1. Discovery 127
 5.4.2. Safety Testing 128
 5.4.3. Idiosyncratic Toxicity 128
5.5. Considerations for Toxicogenomic Study Design 129
 5.5.1. In Vitro Studies 129
 5.5.2. In Vivo Studies 131
5.6. Overview of Major Regulatory Developments Related to Use of Toxicogenomics in Drug Discovery and Development 132
 5.6.1. Data Submission 132
 5.6.2. Voluntary Genomic Data Submission 133
5.7. Summary 134
References 135
6 MOLECULAR PATHOLOGY AS A WAY TO FIND THE RIGHT DOSE FOR A DRUG 143
F. Rojo, A. Rovira, S. Serrano, and J. Albanell

6.1. Introduction 143
6.2. Anti-EGFR-Targeted Therapies: The Pharmacodynamic Experience 145
6.3. Molecular Pathology with Small Molecules Gefitinib and Erlotinib 148
6.4. Molecular Pathology with Cetuximab and Other Monoclonal Antibodies to EGFR 152
6.5. Proteasome Inhibitors: Pharmacodynamics on Blood Samples 155
6.6. Pharmacodynamics with Rapamycin Analogs 156
6.7. Second Generation of Targeted Therapies: Multitarget Agents 159
6.8. Conclusions and Perspectives: Phase 0 Clinical Trials 163
References 164

7 MOLECULAR PATHOLOGY IN LIFE-CYCLE MANAGEMENT IN DRUG DEVELOPMENT 169
Martha Quezado, Carlos A. Torres-Cabal, and David Berman

7.1. Introduction 169
7.2. Molecular Pathology Techniques 169
7.3. Practical Applications of Molecular Pathology Biomarkers 172
7.3.1. Selection of Methylating Chemotherapeutic Regimen 172
7.3.2. Epidermal Growth Factor Receptor Expression Is Important Biomarker in Many Tumors 175
7.3.3. Gastrointestinal Stromal Tumor and KIT Evaluation 180
7.3.4. Chronic Myeloid Leukemia and BCR-ABL Protooncogene 182
7.4. Conclusion 184
References 185

8 MOLECULAR PATHOLOGY AND MOLECULAR THERAPY 195
Hewei Li

8.1. Introduction 195
8.2. Molecular Therapy Strategies 196
8.2.1. Mutation Compensation 196
9 MOLECULAR PATHOLOGY: IMMUNOHISTOCHEMISTRY ASSAYS IN DRUG DEVELOPMENT PERFORMED BY A CONTRACT RESEARCH LABORATORY

Frank Lynch and Steve Bernstein

9.1. Immunohistochemistry Is the Technique of Microscopic Visualization of Target Proteins in Tissue Sections Using Specific Antibodies

9.2. Basics of the IHC Assay

9.2.1. Formalin Fixation and Paraffin Embedding of Tissues

9.2.2. Tissue Pretreatment/Antigen Unmasking

9.2.3. Blocking Step

9.2.4. Primary Antibody

9.2.5. Secondary Antibody

9.2.6. Hydrogen Peroxide Block

9.2.7. Avidin–Biotin Complex Peroxidase

9.2.8. Chromagen

9.2.9. Counterstain

9.2.10. Coverslip

9.3. Immunohistochemistry Assay Development

9.4. Sending a Study to a Contract Laboratory vs. Running In-house

9.4.1. Turn-around Time

9.4.2. In-house Expertise

9.4.3. Throughput Capacity and Range of Services

9.4.4. Laboratory Infrastructure

9.4.5. Costs

9.4.6. Lab Certifications

9.4.7. Third-Party Testing

9.4.8. Future Considerations for Partnering
9.5. Choosing and Working with an Outside Laboratory—Keys for a Successful Relationship—What to Do before a Slide Is Stained 240

9.5.1. Finding the Right Laboratory, Asking the Right Questions 240

9.5.2. What to Look for When Choosing/Evaluating a Laboratory to Outsource IHC Studies 241

9.5.3. Relationship between Sponsor and Contract Laboratory 243

9.5.4. Roles for a Successful Relationship 244

9.6. Running and Managing Outsourced Clinical Studies 247

9.6.1. Confidentiality Agreement 247

9.6.2. Proposals and Contracts 248

9.6.3. Project Initiation and Study Protocol 248

9.6.4. IHC Assay Development/Finalize Assays for Study 249

9.6.5. Sample Handling 249

9.6.6. Testing of Study Samples 249

9.6.7. Scoring of Study Samples 249

9.6.8. Reporting and Documentation of Outsourced IHC Studies 250

9.6.9. Quality Assurance Review of GLP Studies 251

9.6.10. Data Submission 252

9.6.11. Data Integration and Follow-up 252

9.7. Applications of IHC in Drug Discovery and Development Process 253

9.7.1. Target Validation 253

9.7.2. Preclinical Testing 253

9.7.3. Phase I through Phase III Clinical Studies 255

9.7.4. Companion Diagnostics 255

9.8. Conclusion 257

References 257

10 QUANTIFICATION OF MOLECULAR PATHOLOGY: COLORIMETRIC IMMUNOHistoCHEMISTRY 259

Raphael Marcelpoil 259

10.1. Introduction 260

10.2. Imaging Devices and Systems 265

10.3. Quantification: Introduction to Colorimetric Image Analysis 268

10.3.1. Image Acquisition 269

10.3.2. Resolution and Magnification 269
10.3.3. Sensor Size 270
10.3.4. Two Major Camera Technologies Available for Color Image Acquisition 271
10.4. Measuring Colorimetric Information 272
10.4.1. The Lambert–Beer Law 272
10.4.2. Koehler Illumination 272
10.4.3. Additive Property of the Lambert–Beer Law 274
10.4.4. Correction of Chromatic Aberration 275
10.5. Chromogen Separation 276
10.5.1. Looking at Each Pixel as a Set of Linear Equations 276
10.5.2. Shading Correction 278
10.5.3. Solution of Linear Algebraic Equations—Matrices 280
10.5.4. Absorption Coefficient 282
10.5.5. Example 282
10.5.6. Generating Artificial Marker Images 283
10.6. Measuring Information 284
10.6.1. Image Segmentation 285
10.6.2. Cell Scoring 285
10.6.3. Multiplexing and Tissue Microarrays 287
10.7. Conclusion 293
References 294

11 AQUA® TECHNOLOGY AND MOLECULAR PATHOLOGY 295
Mark Gustavson, Marisa Dolled-Filhart, Jason Christiansen, Robert Pinard, and David Rimm
11.1. Introduction 295
11.2. AQUA Technology—How It Works 298
11.2.1. Staining Methodology 298
11.2.2. Tissue Microarray Technology 301
11.2.3. Automated Fluorescence Microscopy and Image Acquisition 301
11.2.4. Automated Image Validation 302
11.2.5. AQUA (Image) Analysis—Producing an AQUA Score 303
11.3. Standardization 308
11.4. Quantification 314
11.5. Localization 321
11.6. Multiparametric Analysis 322
11.6.1. Pathway Diagnostics 325
11.7. Application of AQUA Technology to Drug Discovery and Companion Diagnostics	325
11.8. Summary and Conclusions	327
References	328

Index | 335
During the last few years there has been a great deal of public interest in the area of personalized medicine. News articles, scientific magazines, and entire books have been dedicated to the subject. While a lot has been said about the subject, there is little done in practice. Nowadays there are only a few examples of personalized medicine. One of them is the use of the HER2 diagnostic test, in breast cancer patients, in order to treat them with Herceptin, a drug that works well in that subpopulation. Other tests, like the estrogen receptor (ER) or the progesterone receptor (PR), are also used to put breast cancer patients in hormonal therapy. All these diagnostic tests could be characterized as molecular pathology tests.

My intent in putting this book together was to show others how one can develop new molecular pathology tests for use in personalized medicine. I have used the process of drug discovery and development as the outline of the book for a simple reason, the discovery of the molecular pathology test could be done at the same time that the drug is been discovered. In Chapter 1, Dr. Franz Fogt gives an overview and historical perspective of the field of molecular pathology, and I follow it with a simplified overview of the drug discovery and development process. Chapter 2 follows with a view of the drug discovery process and how molecular pathology could be used to identify and validate new drug candidates. Chapter 3 introduces the reader to the world of biomarkers, and how biomarkers could be found using transcriptional profiling. These biomarkers can then be used as surrogate endpoints, and molecular pathology could play a significant role in validating these biomarkers and developing tests for use in hospitals. This chapter is followed by examples of molecular pathology in safety assessment in the area of toxicology. It also gives an overview of toxicology and its methods to identify off-target liabilities of drugs in both small molecules and biological compounds. Chapter 5 looks at toxicogenomics, a new way of doing toxicology by looking at transcriptional profiling to identify genes that are relevant to the safety of compounds. This chapter is followed by the use of molecular pathology in clinical trials. Examples of how molecular pathology assays have helped identify the right dose for different drugs are shown. Not only is molecular pathology useful in finding the right dose but also in finding the right patients for treatment, which is discussed in Chapter 7. Here again is the area of personalized medicine that is directly affected by molecular pathology. Several examples are shown of how this is done today in the clinic. The following chapters deal more with direct
applications of molecular pathology. Chapter 8 shows several examples of usage of molecular pathology in molecular therapy. Chapter 9 is a practical approach on how to do immunohistochemistry (IHC), one of the most important and useful techniques in molecular pathology. This chapter also indicates if you do not have the expertise in house how to use other companies, contract research organizations, to do this type of work. The last two chapters look more at the future of molecular pathology. Chapter 10 deals with the quantification of the colorimetric signal while Chapter 11 looks at fluorescence as a way to quantify and normalize the signal.

Color representations of selected figures in the book are available as pdf files at the following ftp site address:

I want to thank all the authors for their work. Each chapter has the contributions of people who are truly experts in their fields. Also, thanks to Jonathan Rose at John Wiley & Sons for his patience in guiding me through the whole process.

J. Suso Platero

Radnor, Pennsylvania
March 2009
Dr. J. Albanell
Experimental Therapeutics Unit and Medical Oncology Department
IMIM-Hospital del Mar
Barcelona, Spain

Dr. Ricardo Attar
Ortho Biotech Oncology R&D
Centocor R&D
Radnor, Pennsylvania

Dr. David Berman
Global Clinical Research
Bristol-Myers Squibb
Princeton, New Jersey

Dr. Steve Bernstein
QualTek Molecular Laboratories
Goleta, California

Dr. Wayne R. Buck
Global Pharmaceutical Research and Development
Abbott Laboratories
Abbott Park, Illinois

Dr. Eric A. G. Blomme
Global Pharmaceutical Research and Development
Abbott Laboratories
Abbott Park, Illinois

Dr. Jason Christiansen
HistoRx, Inc.
New Haven, Connecticut

Dr. Marisa Dolled-Filhart
HistoRx, Inc.
New Haven, Connecticut
Dr. Franz Fogt
Chairman, Department of Pathology
Penn-Presbyterian Medical Center
University of Pennsylvania
Philadelphia, Pennsylvania

Dr. Mark Gustavson
HistoRx, Inc.
New Haven, Connecticut

Dr. Hewei Li
Discovery Medicine and Clinical Pharmacology
Bristol-Myers Squibb
Pennington, New Jersey

Dr. Cornelia Liedtke
Department of Breast Medical Oncology
University of Texas M. D. Anderson Cancer
Houston, Texas
and
Department of Gynecology and Obstetrics
University of Münster
Münster, Germany

Dr. Matthew V. Lorenzi
Oncology Drug Discovery
Bristol-Myers Squibb
Princeton, New Jersey

Dr. Frank Lynch
QualTek Molecular Laboratories
Newtown, Pennsylvania

Dr. Raphael Marcelpoil
Senior Scientific Director
Becton Dickinson Biosciences
Le Pont de Claix, France

Dr. Robert Pinard
HistoRx, Inc.
New Haven, Connecticut

Dr. J. Suso Platero
Director Oncology Biomarkers
Centocor R&D
Radnor, Pennsylvania
Dr. Lajos Pusztai
Department of Breast Medical Oncology
University of Texas M. D. Anderson Cancer Center
Houston, Texas

Dr. Martha Quezado
Laboratory of Pathology, Surgical Pathology Section
National Cancer Institute
Bethesda, Maryland

Dr. David Rimm
Yale University School of Medicine
New Haven, Connecticut

Dr. F. Rojo
Pathology Department and Experimental Therapeutics Unit
IMIM-Hospital del Mar
Barcelona, Spain

Dr. A. Rovira
Experimental Therapeutics Unit
IMIM-Hospital del Mar
Barcelona, Spain

Dr. Brent A. Rupnow
Oncology Drug Discovery
Bristol-Myers Squibb
Princeton, New Jersey

Dr. Rolf-P. Ryseck
Oncology Drug Discovery
Bristol-Myers Squibb
Princeton, New Jersey

Dr. S. Serrano
Pathology Department
IMIM-Hospital del Mar
Barcelona, Spain

Dr. W. Fraser Symmans
Department of Pathology
University of Texas M. D. Anderson Cancer Center
Houston, Texas
Dr. Carlos A. Torres-Cabala
Assistant Professor, Department of Pathology
University of Texas M. D. Anderson Cancer Center
Houston, Texas

Dr. Richard A. Westhouse
Department of Discovery Toxicology
Bristol-Myers Squibb
Princeton, New Jersey
1.1. GENERAL PATHOLOGY

The histopathologic assessment of tissues and, for that matter, body fluids serves to diagnose alterations and disease state and helps to categorize and collect information about disease. The pathologic assessment of tissues and organs itself is a stepwise process of progressive analysis of the present disease, and the next possible finding one can describe with (relative) certainty. This is, naturally, only possible when a sufficient amount of tissue is submitted to pathology. If fluid material, only cells present in that specimen can be assessed and further evaluation can mostly not be done with certainty. For the diagnosis of a colon carcinoma, a microscope is rarely necessary. When opened, the colon will reveal the tumor, the size, and, at least semiquantitatively, the invasive depth. However, to assess the correct depth and the type of carcinoma, a section of the tissue must be reviewed with the microscope. The next necessary diagnostic step to categorize, grade, and stage the lesion is the review of the lymph nodes as to their involvement by metastatic disease. Traditional histopathology uses the morphologic aspects of tissue and cellular arrangement to provide diagnosis as to the cellular origin of malignant tumors.

Similarly, morphologic features can be used to predict behavior and outcome of malignant tumors and can influence the way certain tumors are treated. This
is illustrated by the relative bland morphology of bronchioloalveolar carcinomas of the lung with a relatively benign outcome compared to the guarded outcome of poorly differentiated small-cell carcinomas of the same organ. In the case of colorectal carcinomas, the morphologic aspect of tumor transgressing through all layers of the bowel wall and its presence as metastatic tumor within lymph nodes indicates a higher stage of disease and predicts a guarded outcome. At the same time, based on such information, specific treatment, that is, chemotherapy, radiation, and surgery can be initiated.

1.2. GENERAL ASPECTS

Molecular pathology generally describes the aspect of pathology that is removed from the purely histologic aspect of diagnosis and uses information on the molecular level for diagnosis and prediction of outcome. Thus, the molecular aspect of pathology deals with identification of genes and the subsequent change in cellular architecture and expression of proteins in a given disease. Taken in such broad terms, molecular pathology is something pathologists have done for a long time, even before biochemical techniques were invented to analyze cellular DNA. Application of molecular pathology was used to imply the analysis of cellular structures at the electron microscope level or the analysis of proteins within the cell (Roizin, 1964). Staying with malignant tumors, identification of specific proteins within tumor cells can aid in the diagnosis of cellular origin, which may be important for both diagnostic and therapeutic purposes. The presence of tumor within the lung that expresses prostate-specific antigen (PSA) will undoubtedly define this tumor as a metastatic lesion and exclude a pulmonary primary tumor. These proteins may be visualized both by immunohistochemistry, that is, staining with immunohistochemical stains for PSA in case of prostate carcinoma, or by histochemical methods, that is, visualization of mucins with mucicarmin stain for other lesions. These examples use the expression of normal proteins in a tumor, which is, naturally, gene driven. Further assessment of tumors can identify expression of proteins that are not normally expressed in normal cells and, again, be of diagnostic use. The wild type of the p53 protein is a short-lived protein. The probability to have wild-type protein present in a given cell at a given time is quite low, and, thus, staining of tissues that contain wild-type p53 will result in a negative staining. Mutated p53, on the other hand, has a long half-life, will be present in tissues containing that protein, and will stain positive for p53, indicating its abnormal presence (Rom et al., 2000).

1.3. MOLECULAR PATHOLOGY, THE MOLECULAR WAY

The genetic code represents a specific code of four desoxynucleotides, which combine with complementary strands of DNA. When isolated from the nucleus, DNA usually breaks easily at random areas, resulting in DNA strands of various