CHALLENGES IN
Inflammatory Bowel Disease
CHALLENGES IN

Inflammatory Bowel Disease

EDITED BY

Derek P. Jewell
Neil J. Mortensen
A. Hillary Steinhart
John H. Pemberton
Bryan F. Warren

Second edition
Contents

List of Contributors and Editors vii
Preface xi

I Clues to aetiology and pathogenesis 1
1 RICHARD F. A. LOGAN AND EMMA L. ARMITAGE: Global changes in incidence 3
2 JOHN B. BECKLY, TARIQ AHMAD AND DEREK P. JEWELL: The role of genetics in inflammatory bowel disease 14
3 ROBIN G. LORENZ AND CHARLES O. ELSON: Microbial sensing in the intestine by pattern recognition receptors 33
4 ROBERT PENNER AND KAREN MAIDSENI: The role of bacteria 44
5 KENNETH CROITORU: The appendix – how might it influence susceptibility to ulcerative colitis: the legend of Qebehsenuf 57

II Diagnosis and assessment 65
6 BRYAN F. WARREN AND NEIL A. SHEPHERD: What are the controversies in histopathological diagnosis? 67
7 GARY C. CHEN AND SIMON K. LO: The challenges of using capsule endoscopy in the diagnosis and management of inflammatory bowel disease 83
8 STUART TAYLOR AND STEVE HALLIGAN: Cross-sectional imaging of inflammatory bowel disease 105

III Management of ulcerative colitis 117
9 MILES P. SPARROW, WEE-CHIAN LIM AND STEPHEN B. HANAUER: Mesalazine for maintenance therapy in ulcerative colitis – how much, how long? 119
10 SIMON TRAVIS: Refractory distal colitis 124
11 FERGUS SHANAHAN, JUDE RYAN AND SHOMIK SIBARTIE: Pharmabiotics and inflammatory bowel disease – on the verge of evidence-based medicine 144
12 R. JOHN NICHOLLS AND MARK J. CHEETHAM: Current controversies in the surgical management of ulcerative colitis 154
13 ALAN F. HORGAN, WILLIAM J. SANDBORN AND JOHN H. PEMBERTON: What are the causes and treatment of ileoanal pouch dysfunction? 167

IV Management of Crohn’s disease 179
14 A. HILLARY STEINHART: Is mesalazine useful in Crohn’s disease? 181
15 MIQUEL A. GASSULL: Steroids or nutrition? 194
16 SÉVERINE VERMEIRE AND PAUL RUTGEEIERTS: Do antibiotics have a role in Crohn’s disease? 206
17 GEERT D’HAENS: The optimal use of infliximab in Crohn’s disease 213
18 STEPHAN R. TARGAN AND LOREN C. KARP: Designer drugs: from bench to bedside 221
19 W.M. CHAMBERS, I. LINDSEY AND N.J. MORTENSEN: Current controversies in the surgical management of Crohn’s disease 232
20 CARL J. BROWN AND ROBIN S. MCLEOD: Perianal Crohn’s disease 246
21 KAREL GEOES: What is dysplasia? 266
22 URBAN SJÖQUIST AND ROBERT LÖFBERG: Colonoscopic surveillance – if and when? 281
23 RALF KIESSLICH AND MARKUS F. NEURATH: Cancer: new colonoscopic techniques 293

24 JACINTHA N. O’SULLIVAN AND TERESA A. BRENTNALL: Molecular markers – a realistic hope? 303
25 MAHA GUINTDI AND ROBERT H. RIGDELL: Adenomas versus dysplasia associated lesion or mass – recognition and management? 312

V Special management problems 327
26 THOMAS D. WALTERS AND ANNE M. GRIFFITHS: Growth impairment in children 329
27 SUBRATA GHOSH: Osteopenia 340
28 PHILIPPE MARTEAU: Pregnancy 360
29 ROBERT HILSDEN AND LLOYD SUTHERLAND: Can prognosis of ulcerative colitis be predicted? 369

Index 377
List of Contributors and Editors

EDITORS

Derek P. Jewell, Gastroenterology Unit, Radcliffe Infirmary, Woodstock Road, Oxford, UK

Neil J. Mortensen, Department of Colorectal Surgery, John Radcliffe Hospital, Headley Way, Oxford, UK

John H. Pemberton, Professor of Surgery, Mayo Clinic College of Medicine, Division of Colon and Rectal Surgery, Mayo Clinic, Gonda 9-s, 200 First Street SW, Rochester, MN 55905, USA

A. Hillary Steinhart, Head, Combined Division of Gastroenterology, Mount Sinai Hospital/University Health Network, Associate Professor of Medicine, University of Toronto, Toronto, M5G 1X5 Canada

Bryan F. Warren, Department of Cellular Pathology, John Radcliffe Hospital, Headley Way, Oxford, UK

Teresa A. Brentnall, Department of Medicine, University of Washington, Seattle, 98195, USA

W. M. Chambers, Department of Colorectal Surgery, John Radcliffe Hospital, Headley Way, Oxford, UK

Carl J. Brown, Resident in Colorectal Surgery, University of Toronto, Canada

Gary C. Chen, Department of Medicine Cedars-Sinai Medical Center, Los Angeles, California 90048, USA

Mark J. Cheetham, St Mark’s Hospital, Watford Road, Harrow, Middlesex, UK

Kenneth Croitoru, Intestinal Diseases Research Program, Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada

Charles O. Elson, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Miquel A. Gassull, Associate Professor of Medicine, Universitat Autonoma de Barcelona, Head of the Department of Gastroenterology, Hospital Universitari Germans Trias i Pujol., Badalona, Catalonia, Spain

Karel Geboes, Professor in Pathology, Department of Pathology, University Hospital Kul, Minderbroedersstraat 12, 3000 Leuven, Belgium

CONTRIBUTORS

Tariq Ahmad, Gastroenterology Unit, Radcliffe Infirmary, Woodstock Road, Oxford, UK

Emma L. Armitage, Specialist Registrar, Gastroenterology, GI Unit, Western General Hospital, Crewe Road, Edinburgh, UK

John B. Beckly, Gastroenterology Unit, Radcliffe Infirmary, Woodstock Road, Oxford, UK
Subrata Ghosh, Professor of Gastroenterology, Imperial College London, Hammersmith Hospital, Ducane Road, London

Anne M. Griffiths, Associate Chief (Clinical), Division of GI Nutrition, 555 University Avenue, Hospital for Sick Children, University of Toronto, Toronto, Canada

Maha Guindi, Assistant Professor, Department of Laboratory Medicine and Pathobiology, University of Toronto, and Department of Pathology, University Health Network/Toronto General Hospital, Toronto, Ontario, Canada

Geert D’Haens, Gastroenterology Unit, Imelda GI Clinical Research Centre, Bonheiden, Belgium

Steve Halligan Professor of Gastrointestinal Radiologist Dept of Specialist X-Ray University College Hospital, London, UK

Stephen B. Hanauer, Professor of Medicine and Clinical Pharmacology, Director, Section of Gastroenterology and Nutrition, University of Chicago Medical Center

Robert Hilsden, Associate Professor, Department of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada

Alan F. Horgan Consultant Colorectal Surgeon, Freeman Hospital, High Heaton, Newcastle, NE7 7DN, UK

Loren C. Karp, Division of Gastroenterology, Inflammatory Bowel Disease Center, and Immunobiology Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Suite D4063, Los Angeles CA 90048, USA

Ralf Kiesslich, I. Med. Klinik und Poliklinik, Johannes Gutenberg Universität Mainz, Mainz, Germany

Wee-Chian Lim, Section of Gastroenterology and Nutrition, University of Chicago Medical Center, Chicago, USA

I. Lindsay, Department of Colorectal Surgery, John Radcliffe Hospital, Oxford, UK

Simon K. Lo, Associate Clinical Director of GI Endoscopy, Professor of Medicine, David Geffen School of Medicine at UCLA, Cedars-sinai Medical Center, Los Angeles, California, USA

Robert Löfberg, Karolinska Institute, Huddinge University, Stockholm, Sweden

Richard F. A. Logan, Professor of Clinical Epidemiology, Division of Epidemiology and Public Health, University of Nottingham, Queen’s Medical Centre, Nottingham, UK

Robin G. Lorenz, Department of *Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA

Karen Madsen, Associate Professor, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada

Philippe Marteau, Gastroenterology Department, Lariboisiere Hospital, Assistance Publique des Hôpitaux de Paris, and Paris V University, France

Robin S. McLeod, Professor of Surgery and Health Policy, Management and Evaluation, University of Toronto; Head, Division of General Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada

Markus F. Neurath, I. Med. Klinik und Poliklinik, Johannes Gutenberg Universität Mainz, Mainz, Germany

R. John Nicholls, St Mark’s Hospital, Watford Road, Harrow, Middlesex, UK

Robert Penner, Kelowna General Hospital, 564 Leon Avenue, Kelowna, British Columbia

Jacintha N. O’Sullivan, Senior Research Scientist, Centre for Colorectal Disease, Education and Research Centre, St Vincents University Hospital, Elm Park, Dublin 9, Ireland

Robert H. Riddell, Professor of Pathology, Department of Laboratory Medicine and Pathobiology, University of Toronto, and Department of Pathology, Mount Sinai Hospital, Toronto, Ontario, Canada
Paul Rutgeerts, Head of the IBD
Research Unit, Department of Gastroenterology,
University Hospital Gasthuisberg,
Herestraat 49, 3000 Leuven, Belgium

Jude Ryan, Alimentary Pharmabiotic Centre and
Department of Medicine, University College Cork, National University of Ireland, Ireland

William J. Sandborn, Professor of Medicine,
Mayo Clinic College of Medicine, Division of
Gastroenterology and Hepatology, Mayo Clinic,
200 First Street SW, Rochester, MN 55902, USA

Fergus Shanahan, Alimentary Pharmabiotic
Centre and Department of Medicine, University
College Cork, National University of Ireland, Ireland

Neil A. Shepherd, Department of
Histopathology, Gloucestershire Royal Hospital,
Great Western Road, Gloucester, UK

Shomik Sibartie, Alimentary Pharmabiotic Centre
and Department of Medicine, University College Cork, National University of Ireland, Ireland

Urban Sjöqvist, Senior Consultant, Department of
Medicine, Karolinske Institutet at Stockholm
Söder Hospital, Stockholm, Sweden

Miles P. Sparrow, Section of Gastroenterology
and Nutrition, University of Chicago Medical
Center, Chicago, USA

Lloyd Sutherland, Departments of Medicine and
Community Health Sciences, University of
Calgary, Calgary Alberta Canada

Stephan R. Targan, Director, Division of
Gastroenterology, Inflammatory Bowel Disease
Center, and Immunobiology Institute,
Cedars-Sinai Medical Center, 8700 Beverly Blvd.,
Suite D4063, Los Angeles CA 90048, USA

Stuart Taylor, Consultant Radiologist and Senior
Lecturer Department of Specialist X-Ray
University College Hospital, London, UK

Simon Travis, Consultant Gastroenterologist, John
Radcliffe Hospital, Oxford, UK

Séverine Vermeire, Department of
Gastroenterology, University Hospital
Gasthuisberg, Herestraat 49, 3000 Leuven,
Belgium

Thomas D. Walters, Fellow in Paediatric
Gastroenterology and Nutrition, Division of
Paediatric Gastroenterology and Nutrition,
Hospital for Sick Children, University of
Toronto, Toronto, Canada
Preface

For many years the aetiology and management of inflammatory bowel disease seemed to have reached a steady state where only small but nonetheless important steps were made in our understanding of these potentially devastating diseases. Suddenly, with the molecular biology revolution, there is renewed interest in the mechanisms of inflammation, the genes that may determine them and the development of new powerful designer drugs. As never before, gastroenterologists are having to redefine the place of the established medical and surgical treatments alongside these novel treatments. This has led to unexpected problems in the diagnosis and definitions of disease as histopathologists have struggled with indeterminate colitis, pouchitis and perforating and stenosing varieties of Crohn’s disease.

Although exacting and more robust epidemiological tests are available, it is still not clear whether the incidence of either ulcerative colitis or Crohn’s disease is changing both within the western world and developing countries. The importance of infective agents within the gut lumen would seem to be intuitively relevant but their role remains undefined. Claims for the importance of specific organisms involved in the pathogenesis of either disease have had their fashionable ‘rise and fall’ so that no organism has been consistently implicated. Indeed, current evidence would suggest that these diseases represent a genetic susceptibility, mediated by many different genes, to a variety of environmental factors. This hypothesis allows for the very great heterogeneity that is seen by clinicians.

Since the 1950s, aminosalicylates and corticosteroids have provided the only effective treatments, but the final decade of the last millennium has seen the introduction of many new therapies, principally immunosuppressant and immunomodulatory drugs. It has been encouraging that their effectiveness has been tested in clinical trials and subsequent meta-analyses, continuing the evidence-based approach to these diseases which began with the early trials of corticosteroids and sulphasalazine and which has consistently underpinned the treatment of ulcerative colitis and Crohn’s disease. Nevertheless, medical therapy is still imperfect: it may fail to control active disease. Maintenance therapy, especially for Crohn’s disease, is very unsatisfactory and drug therapy frequently contributes to long-term morbidity; for example, corticosteroids may contribute to growth failure in children and to reduced bone density in adults. The rapid expansion in drug therapy has been matched with many surgical innovations such as restorative proctocolectomy for ulcerative colitis and the concept of minimal surgery for Crohn’s disease. Thus, the number of surgical options now available to us inevitably raise questions concerning the choice of operation to be performed, when and by whom.

The purpose of this book is to address some of the challenges in our understanding of ulcerative colitis and Crohn’s disease, the challenges of new diagnostic and therapeutic modalities and the clinical challenges of maintaining good health and hence quality of life for our patients. It is not intended to provide a further text book of inflammatory bowel disease, of which there are many, but rather to consider specific issues. Many readers will want to focus on individual chapters and therefore the editors
make no apology for a degree of repetition which will allow maximum exposure to new knowledge and thought.

The editors are greatly appreciative of the time the authors have given to allow this book to gestate into a second edition. We are also most grateful to Mrs Toria McNeile for her help in assembling the manuscripts and to Ms Alison Brown and her staff at Blackwell for their patience and expertise.

DJ
NM
AHS
JHP
BW
I: Clues to aetiology and pathogenesis
1: **Global changes in incidence**

Richard F.A. Logan and Emma L. Armitage

Introduction

Variation in disease occurrence is the essence of epidemiology. When this variation is between place or person, and standardised measures are available, measurement of such variation can be relatively accurate, albeit often expensive and laborious, as demonstrated by the European collaborative study on inflammatory bowel disease (EC-IBD) [1]. In contrast, measurement of variation over time is usually fraught with difficulty and any trends revealed, unless substantial, are often surrounded by uncertainty. With regard to inflammatory bowel disease (IBD), more sensitive diagnostic techniques, widening case definitions, increasing availability of specialist investigation and greater public and professional awareness of both diseases will all serve to increase the numbers of new diagnoses and have the potential to contribute to an apparent rise in incidence. In this chapter we will review recent data on the incidence of IBD worldwide and, at the risk of over-generalising, assess what they imply as to the aetiology of IBD.

The rise in incidences of ulcerative colitis and later Crohn’s disease that was seen in many Western countries during the past century, preceded the growth of modern gastroenterology and was evident in both individual studies and routine morbidity and mortality data [2–4]. Over the last few years, however, there have been a number of conflicting reports of the incidence of both diseases either continuing to increase, or being stable or even declining. For example, Bernstein *et al.*, using health insurance data for Manitoba, Canada, reported an overall incidence of Crohn’s disease of 146/million/year, the highest yet reported, whereas a few hundred miles to the south in Olmsted County, Minnesota, Loftus *et al.* found an incidence over a similar period of 69/million/year [5, 6]. An almost two-fold variation has also been reported from the United Kingdom, with Kyle finding the incidence of Crohn’s disease continuing to rise in north-east Scotland at 98/million/year in 1985–87, while in the Cardiff area incidence was declining with the figure for 1986–90 being 62/million/year and 56/million/year for 1991–95 [7, 8]. There have been fewer reports of the time trends in incidences of ulcerative colitis, which may reflect the additional challenge for epidemiological studies of distinguishing it from non-recurrent, mainly infective forms of colitis. Even so, in the (EC) IBD study the incidence of ulcerative colitis in parts of Europe as far apart as Iceland and Crete was higher than previously recorded [1].

Are these differences real or can the disparate findings of these studies be explained by differences in study design or imperfections of the methods used? One possible explanation is that the differences reported reflect sampling and study size. For many diseases, cancer in particular, this problem can be overcome by examining mortality or morbidity routinely collected at a national or regional level.

Evidence from trends in routinely collected morbidity data

For IBD, mortality data are of little value in assessing its incidence over time. Death from IBD is now rare,
with fewer than 400 deaths per year now being certified as due to IBD in the United Kingdom [9]. In addition, over 75% of these deaths occur in those over 70 years, whereas the incidence of IBD is greatest in those under age 40. Although mortality rates do show a broad correlation with incidence figures between countries, the relationship breaks down when comparing mortality and incidence within a country over time [10]. Thus, the rapid rise in incidence of Crohn’s disease during the 1950s and 1960s in the United Kingdom and the United States was associated with a less than doubling of mortality rates [11]. At the same time, mortality from ulcerative colitis in these countries declined sharply when other data suggested incidence was unchanged or possibly increasing.

Routinely collected morbidity data has mainly consisted of data on hospital admissions, which has been collected over many years in several countries. Another source of data is that collected by health insurance or health maintenance organisations, typically from North America, which has the advantage of including data on outpatient (ambulatory) care as well as that for inpatient care. Using either source it is necessary to separate first admissions or contacts from repeat contacts. Hospital admission data are also affected by changing patterns of care, with patients being increasingly cared for as outpatients. With these considerations in mind it is notable that in Denmark the annual incidence of Crohn’s disease, based on their national registry of inpatients, increased from 46 to 62/million/year in women between 1981–84 and 1989–92, and from 33 to 41/million/year in men over the same period [12]. The figures were similar to the overall crude incidence of 41/million/year reported elsewhere for Copenhagen County in 1979–87. In contrast, the incidence of ulcerative colitis over this period fell from 154 to 123/million/year in women and from 141 to 126/million/year in men.

Hospital admission data (now called hospital episode statistics) are collected in the United Kingdom, but except in the Oxford region and Scotland it is not possible to identify first admissions from repeat admissions [13, 14]. In England, hospital admission rates for Crohn’s disease increased by approximately 4% annually during the period from 1970 to 1985, but when admissions in the Oxford region were linked to individuals, first admissions for men declined by 0.5% annually and for women rose by 0.1%, neither being statistically significant [13]. Over the same period hospital admission rates for ulcerative colitis in England showed no change, although first admission rates in the Oxford region showed a 1% average annual increase, which was not statistically significant [13].

Both these studies, like most studies on routinely collected data, relied on accurate coding of the discharge diagnosis. This is a particular problem for inflammatory bowel disease where there is often some uncertainty as to whether the diagnosis is Crohn’s disease (CD) or ulcerative colitis (UC). To overcome this problem Bernstein et al. in their study using health insurance records for Manitoba, validated the diagnoses according to questionnaire responses obtained from a subset of patients directly approached [5]. They also ignored all cases with a first medical contact within the first 5 years of their study period to try to ensure that only incident cases were included. How successful they were is difficult to judge. Inclusion of a proportion of non-incident cases will disproportionately increase incidence in the older age groups. Their figures for the incidence of Crohn’s disease are some of the highest reported at 169/million/year in women and 123/million/year in men. Incidence rates for ulcerative colitis were also high at 144/million/year in women and 143/million/year in men.

Thus, the routinely collected data give a mixed picture. The lack of increase in the figures from the Oxford region could reflect an increased proportion of patients having outpatient care only. The same restriction also applies to the Danish data, although a validation study on a subset showed the diagnostic accuracy to be high, and overall incidence was in keeping with a smaller hospital-based study [12]. The Canadian data are particularly remarkable, as generally the figures for IBD incidence reported from North America have tended to be lower than those from Europe. These three studies reflect some of the important limitations of routinely collected morbidity data – namely that it is usually difficult to make direct comparisons between data sets on account of differences in the health-care systems.
involved. Secondly, changes in how the data are collected often restrict analyses to time periods of less than 20 years. A third limitation is that it is usually not possible to validate the accuracy of diagnosis, which is of special importance when distinguishing Crohn’s disease from ulcerative colitis.

Time trends in individual studies

The alternative to figures generated from routine data is to use the results of individual *ad hoc* studies. In many European countries with centralised state-funded health care, such studies appear deceptively straightforward. Population catchment areas are often well defined and specialist care is provided by a small number of gastroenterologists, who also usually provide whatever private care is available. However, IBD is relatively uncommon, and prospective studies need to be prolonged to provide reliable figures on time trends. Other issues that have not always been carefully addressed include the criteria for diagnosis, residence criteria and clear definitions for date of onset or diagnosis. In addition, as already mentioned, the effects of increasing awareness, better case ascertainment, greater use of more sensitive tests such as colonoscopy and evolving case definitions need to be considered.

Fortunately, in a few areas IBD incidence has been monitored either prospectively or by repeated retrospective studies over periods of more than 20 years, and these studies arguably provide the most reliable evidence on incidence trends (Figs 1.1 and 1.2). Rates have been plotted according to the last year of each time period reported and in most areas the rates have been age-standardised to correct for changes in their population age structures over time. Of the eight areas shown in Fig 1.1, only in the Aberdeen area and most recently in Stockholm has the incidence of Crohn’s disease shown more than a small increase since 1980 [7, 25]. When the Aberdeen data are age-standardised there is some reduction in the rate of increase, although the final figure remains high at 88/million [26]. It is too soon to know whether this represents a sustained increase; a similar peak in incidence was previously found in Cardiff. Otherwise the remarkable feature is how little variation there is between places as different as Cardiff in the United Kingdom,
Orebro in Sweden and Rochester in the United States.

These studies were all performed in an era when colonoscopy was not regarded as the standard investigation it has now become. For example, in northern France in the 1990s 92% of patients with Crohn’s disease and 99% of those with ulcerative colitis had had a colonoscopy at diagnosis [17]. A recent updating of data from Stockholm found that 70% of Crohn’s patients had a colonoscopy at diagnosis [25]. Equivalent figures for the 1980s and earlier have not been reported and it is unclear what proportion of IBD would have been labelled as ulcerative colitis in the absence of evidence, either macroscopic or microscopic, obtained at colonoscopy. Nevertheless, greater use of colonoscopy would account for the increasing proportion of patients found to have Crohn’s disease affecting the colon, as reported in several recent studies [8, 17, 28].

There have been fewer studies of ulcerative colitis incidence. In the countries where IBD is common incidence rates for ulcerative colitis have tended to show more variation than those for Crohn’s disease. Probably this reflects the additional problems posed by variable ascertainment of mildly symptomatic cases including those with proctitis only, and distinguishing single or transient episodes of colitis induced by infection or drugs. In Nottingham, the prevalence of previously undiagnosed ulcerative colitis in subjects offered faecal occult blood testing for colorectal cancer screening was 700/million [29]. Most were mildly symptomatic but had not sought medical advice. In the recent Norwegian study a diagnosis of ulcerative colitis could not be confirmed in 12% of patients when reinvestigated one year after diagnosis [30].

Given these considerations and the various changes in health care already mentioned, the increases in incidence over time (shown in Fig 1.2) are perhaps less than might have been expected. What does seem to have changed is the age-specific pattern, with an increase in incidence of ulcerative
colitis at older ages in men but not in women. Thus, in the EC-IBD study and in the recent data from northern France the expected peak in incidence in the younger age groups was present for women but not for men [1, 27].

Geographic trends in incidence

Over the past 30 years a large number of other *ad hoc* studies have been reported from diverse locations worldwide. Table 1.1 shows the incidence rates reported from recent European studies. The incidence of both diseases appears to show around a 10-fold variation across Europe, but in general, the incidence of both is highest in countries in northern latitudes. The north-south gradient in IBD incidence was first described in Europe and was based on observations from these individual studies. However, the conclusions reached by comparison of these studies are once again hampered by variations in study design, notably case definition, methods of case ascertainment and time period of investigation. In addition, many studies reported only crude rather than age-standardised or age-specific incidence rates for their populations and in others, case ascertainment in children and the elderly was less complete than at other ages. The European collaborative study on IBD incidence was set up to overcome these problems by standardising methods throughout all participating centres. It concluded that the ‘magnitude of the observed excess in north is less than expected on the basis of previous studies . . . this may reflect increases in incidence of IBD in Southern Europe whilst north may have stabilised’ [1]. Incidence rates from centres participating in EC-IBD are shown in Table 1.1 in bold.

In North America significant geographic variation also appears to exist, and generally populations

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Area</th>
<th>Time period</th>
<th>UC (n)</th>
<th>CD (n)</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moum [31, 32]</td>
<td>1997</td>
<td>South-east Norway</td>
<td>1990–93</td>
<td>12.8 (496)</td>
<td>6 (232)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Salupere [33]</td>
<td>2001</td>
<td>Tartu, Estonia</td>
<td>1993–98</td>
<td>1.7 (16)</td>
<td>1.4 (13)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Rubin [34]</td>
<td>2000</td>
<td>North Tees, UK</td>
<td>1990–94</td>
<td>13.9 (94)</td>
<td>8.3 (56)</td>
<td>Retrospective</td>
</tr>
<tr>
<td>Yapp [8]</td>
<td>2000</td>
<td>Cardiff, UK</td>
<td>1991–95</td>
<td>5.6 (84)</td>
<td>5.6 (84)</td>
<td>Retrospective</td>
</tr>
<tr>
<td>Latour [36]</td>
<td>1998</td>
<td>Leige, Belgium</td>
<td>1993–96</td>
<td>3.6 (111)</td>
<td>4.5 (137)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Pagenault [37]</td>
<td>1997</td>
<td>Brittany, France</td>
<td>1994–95</td>
<td>2.9 (165)</td>
<td>2.8 (205)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Flamenboum [38]</td>
<td>1997</td>
<td>Puy de Dome, France</td>
<td>1993–94</td>
<td>2.4 (29)</td>
<td>6.6 (79)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Lakatos [39]</td>
<td>2004</td>
<td>Western Hungary</td>
<td>1977–01</td>
<td>5.8 (560)</td>
<td>2.2 (212)</td>
<td>Retrospective</td>
</tr>
<tr>
<td>Ranzi [40]</td>
<td>1996</td>
<td>Cremona, Italy</td>
<td>1990–93</td>
<td>7.0 (82)</td>
<td>3.4 (40)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Trallori [41]</td>
<td>1996</td>
<td>Florence</td>
<td>1990–92</td>
<td>9.6</td>
<td>3.4</td>
<td>Retrospective</td>
</tr>
<tr>
<td>Tragnone [42]</td>
<td>1996</td>
<td>Italy (8 cities)</td>
<td>1989–92</td>
<td>5.2 (509)</td>
<td>2.3 (222)</td>
<td>Prospective</td>
</tr>
<tr>
<td>Tsianos [45]</td>
<td>2003</td>
<td>N W Greece</td>
<td>1982–97</td>
<td>6.6 (357)</td>
<td>0.5 (43)</td>
<td>Retrospective</td>
</tr>
<tr>
<td>Molinie [27]</td>
<td>2004</td>
<td>Northern France</td>
<td>1988–99</td>
<td>4.0 (2665)</td>
<td>6.0 (4013)</td>
<td>Prospective</td>
</tr>
</tbody>
</table>

UC: ulcerative colitis; CD: Crohn’s disease.
with the highest incidence and prevalence rates have been located in northern latitudes [4, 5, 46, 47]. Once again, these findings are based on the results of individual studies and are therefore difficult to compare due to methodological differences. One study that overcomes these problems is a study in the United States of military veterans and Medicare beneficiaries, which shows that the incidence of IBD is higher in the north compared to the south [48, 49].

Further analysis of the large Scottish cohort of juvenile-onset IBD between 1981 and 1995 [50] has also found that northerly region of residence was an independent risk factor for developing CD but not UC [48]. The relative risk of CD in the south compared with the north was 0.73 (95% CI 0.58–0.92, p < 0.001), but UC did not show this north/south variation. This pattern has not been examined in other paediatric populations, but does support the hypothesis that CD incidence exhibits a latitudinal gradient with incidence increasing with more northern latitudes.

Rest of the world

Until the 1980s reports of IBD occurrence from outside Europe and North America consisted essentially of case reports or case series. The exception was South Africa where Wright et al. found the incidence of both diseases in the Cape Town area to be greatest in the Whites but with incidence less than half that found in equivalent European populations. Incidence of both diseases in the coloured population was lower again and lowest of all in the Blacks [51]. Recent well-researched studies from Japan and Korea have shown IBD to be much less common than in Europe with UC incidence being 10–20/million/year and CD less than 5/million/year [52–55].

In line with the data from Japan and the Far East, UC has traditionally been regarded as rare in the developing world. However, an impressive pair of population surveys in northern India has revealed an UC incidence of 60/million/year and a prevalence of symptomatic UC of 443/million – figures not much lower than those reported from several European countries [56]. It is unclear whether these figures reflect an increasing UC incidence, as this is the first formal study of IBD incidence from India.

Trends in incidence of juvenile-onset Crohn’s disease

Incidence patterns for whole populations may conceal changes taking place in smaller subgroups of that population, such as children. Although Crohn’s disease incidence may be stable overall, several groups have suggested that incidence in children is particularly increasing. The epidemiology of this subgroup is of particular importance because several current hypotheses as to the causes of CD and UC relate to events happening in infancy or childhood [57–61].

In assessing any increase in incidence in children, one needs to consider some additional factors that could account for a spurious increase (Table 1.2). Firstly, the steep increase in incidence at ages 15 and 16 coincides with the arbitrary division between childhood and adulthood. Thus, any reduction in the time between symptom onset and diagnosis could have a disproportionate effect on incidence in childhood. As Table 1.3 shows, researchers have been divided in choosing age 14, 15 or 16 as the upper limit of childhood. How this might affect the figures is difficult to gauge, but it is notable that in the study from Copenhagen where the low incidence below age 15 is based on only six cases, in a further 17 symptom onset was before age 15 but diagnosis occurred in adulthood. Secondly, time from symptom onset to diagnosis of Crohn’s disease in children has shortened; in the United Kingdom this has gone from around 12 months in the early 1980s to around 5 months in the recent data collected [77]. Other factors include the increased intensity of investigation and changing criteria for diagnosis of Crohn’s disease.

As noted above, diagnosis for all hospital admissions in Scotland are recorded in a linked fashion for the whole country in the ‘Scottish Hospitals discharges linked database’ [78]. The linkage of data allows the whole series of that patient’s admissions to be identified at any one time, allowing identification of incident cases rather than just hospital admission episodes. Using this database Barton et al.
Global Changes in Incidence

Table 1.2 Possible factors contributing to an increase in incidence of Crohn’s disease in children.

- Greater case ascertainment
- Quicker diagnosis → diagnosis at age 15, not 16
- Diagnostic transfer, atypical UC → CD
- Widening case definitions e.g. inclusion of orofacial granulomatosis
- Earlier onset in predisposed individuals
- Real increase in incidence

UC: ulcerative colitis; CD: Crohn’s disease.

They looked at incidence rates for juvenile onset IBD from 1968 to 1983 [71]. They found a three-fold rise in incidence for CD, and a marginal fall in UC. The data for CD, after allowing for a short lag, would seem to parallel the increase seen in adults over the preceding few decades. Over the last decade with increasing interest in the aetiological role of perinatal and early childhood factors, other groups have now published comparable epidemiological studies of the juvenile-onset subgroup (Table 1.3).

The figures from the Scandinavian countries seem to show more variation, with the rates from Denmark and Finland being a half to a third of those from Sweden and Norway. In part, this reflects the different age bands used (Table 1.3). Nevertheless, the situation within Sweden is as varied, because the recent data from northern Stockholm (Table 1.4) suggests a doubling in incidence of Crohn’s disease, predominantly accounted for by increasing colonic disease, and a decline in ulcerative colitis.

Table 1.3 Recent incidence data for Crohn’s disease (CD) and ulcerative colitis (UC) in childhood.

<table>
<thead>
<tr>
<th>First author</th>
<th>Area</th>
<th>Period</th>
<th>Duration (years)</th>
<th>Age group</th>
<th>Rates per 100,000/year n</th>
<th>Rates per 100,000/year n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langholz [62]</td>
<td>Copenhagen</td>
<td>1962–87</td>
<td>15</td>
<td>0–14</td>
<td>0.2</td>
<td>6</td>
</tr>
<tr>
<td>Olafsdottir [63]</td>
<td>W Norway</td>
<td>1984–85</td>
<td>2</td>
<td>0–15</td>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>Bentsen [64]</td>
<td>SE Norway</td>
<td>1990–94</td>
<td>4</td>
<td>0–15</td>
<td>2.0</td>
<td>14</td>
</tr>
<tr>
<td>Lindberg [65]</td>
<td>SW Sweden</td>
<td>1984–86</td>
<td>3</td>
<td>0–15</td>
<td>1.9</td>
<td>211 †</td>
</tr>
<tr>
<td>Hildebrand [66]</td>
<td>N Stockholm</td>
<td>1990–01</td>
<td>12</td>
<td>0–15</td>
<td>4.9</td>
<td>102</td>
</tr>
<tr>
<td>Kolek [67]</td>
<td>Czech republic</td>
<td>1990–01</td>
<td>12</td>
<td>0–15</td>
<td>1.0</td>
<td>19</td>
</tr>
<tr>
<td>Van der Zaag-Loonen [68]</td>
<td>Netherlands</td>
<td>1999–01</td>
<td>2</td>
<td>0–17</td>
<td>2.1</td>
<td>17</td>
</tr>
<tr>
<td>Tourtelier [69]</td>
<td>NW France</td>
<td>1994–97</td>
<td>4</td>
<td>0–16</td>
<td>1.6</td>
<td>43</td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosgrove [70]</td>
<td>S Wales</td>
<td>1983–93</td>
<td>11</td>
<td>0–15</td>
<td>2.2</td>
<td>21</td>
</tr>
<tr>
<td>Barton [71]</td>
<td>Scotland</td>
<td>1968</td>
<td>1</td>
<td>0–16</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>Armitage [72]</td>
<td>Scotland</td>
<td>1981–95</td>
<td>15</td>
<td>0–15</td>
<td>2.3</td>
<td>383</td>
</tr>
<tr>
<td>Hassan [73]</td>
<td>Wales</td>
<td>1995–97</td>
<td>1</td>
<td>0–16</td>
<td>1.4</td>
<td>20</td>
</tr>
<tr>
<td>Sawczenko [74]</td>
<td>UK</td>
<td>1998</td>
<td>1</td>
<td>0–15</td>
<td>3.1</td>
<td>17</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kugathasan [75]</td>
<td>Wisconsin</td>
<td>2000–01</td>
<td>2</td>
<td>0–17</td>
<td>4.6</td>
<td>129</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phavichitr [76]</td>
<td>Melbourne</td>
<td>1996–01</td>
<td>5</td>
<td>0–16</td>
<td>2.0</td>
<td>233</td>
</tr>
</tbody>
</table>

*Rate for 6–16 years.
†Numbers for both periods.
in under 16-year-olds during the 1990s, while the larger study covering just over half the childhood population (<16 years) of Sweden found no increase in Crohn’s disease incidence but a two-fold rise in incidence of ulcerative colitis [65, 66].

In the paediatric age group, further research from Scotland has also shown a higher incidence of CD in the more affluent areas of Scotland, as defined by postcode sector [50]. This pattern was independent of temporal, gender or regional trends and was therefore not purely a reflection of the geographical distribution of deprivation. The relationship to affluence was seen in CD, but not in UC, thus it is unlikely that the association was simply due to a higher reporting of symptoms to primary care in affluent areas.

Conclusions

It would be a serious mistake to assume incidence trends should be similar even in developed countries. With these caveats, there is broad support for the following:

- In Westernised countries, where Crohn’s disease is already common, there is no consistent evidence of a continuing rise with the most reliable data showing stable incidence since the 1980s.
- In areas reporting an increase in Crohn’s disease (northern France and Stockholm) the increase has been predominantly in colorectal Crohn’s disease.
- Overall incidence of ulcerative colitis in the same countries is not rising.

- In areas of Europe where historically IBD has been uncommon or rare the incidence of both diseases is rising, although some of the rise may reflect greater access to health care with the general pattern being of an increase in UC followed by Crohn’s disease, within a generation or less.
- Both diseases are now appearing in Japan and the rest of Asia.
- The incidence of Crohn’s disease in children is increasing but how much of the increase is accounted for by earlier diagnosis, varying definitions of childhood and changes in diagnostic criteria is still not clear.

Overall, this pattern is in keeping with some environmental factors associated with economic development or Westernised lifestyles. Focussing on the emergence of IBD in the developing world is likely to be a fruitful area for research.

References

GLOBAL CHANGES IN INCIDENCE

