MOUNTAINS WITNESSES OF GLOBAL CHANGES
RESEARCH IN THE HIMALAYA AND KARAKORAM: SHARE-ASIA PROJECT
DEVELOPMENTS IN EARTH SURFACE PROCESSES

Volumes 1 and 3 are out of print

2. WEATHERING, SOILS & PALEOSOLS
 I.P. MARTINI and W. CHESWORTH (Editors)

4. ENVIRONMENTAL GEOMORPHOLOGY
 M. PANIZZA

5. GEOMORPHOLOGICAL HAZARDS OF EUROPE
 C. EMBLETON and C. EMBLETON-HAMANN (Editors)

6. ROCK COATINGS
 R.I. DORN

7. CATCHMENT DYNAMICS AND RIVER PROCESSES
 C. GARCIA and R.J. BATALLA (Editors)

8. CLIMATIC GEOMORPHOLOGY
 M. GUTIÉRREZ

9. PEATLANDS: EVOLUTION AND RECORDS OF
 ENVIRONMENTAL AND CLIMATE CHANGES
 L.P. MARTINI, A. MARTINEZ CORTIZAS and
 W. CHESWORTH (Editors)
MOUNTAINS WITNESSES OF GLOBAL CHANGES
RESEARCH IN THE HIMALAYA AND KARAKORAM:
SHARE-ASIA PROJECT

Edited by

Renato Baudo
Italian National Research Council, Institute of Ecosystem Study (CNR-ISE), Verbania Pallanza, Italy

Gianni Tartari
Italian National Research Council, Water Research Institute (CNR-IRSA), Brugherio, Italy and Ev-K²-CNR Committee, Bergamo, Italy

Elisa Vuillermoz
Ev-K²-CNR Committee, Bergamo, Italy
Foreword

This new volume on *Mountains, Witnesses of Global Changes* in our book series, *Developments in Earth Surface Processes*, is a departure from our dominant focus on geomorphology in that we address here a predominance of atmospheric and environmental factors in some alpine environments, particularly those of the Himalaya. Inasmuch as many of these atmospheric and environmental processes directly or indirectly interact with, control, or are controlled by landforms of the high mountains, the linkages of the papers of this book with the underlying geomorphological themes of our book series are obvious. These linkages are especially exemplified by the great snow and ice resources of the Himalaya, the sources of the downstream melt-waters that are so vital to the millions of people who depend upon such waters for irrigation throughout the region. Any major disturbance to the westerly and monsoon sources of such an elemental product of atmospheric processes must be scientifically assessed with very great precision and originality in order to be better able to forecast future changes.

Anthropogenic and natural aspects of global change, including climatic warming from buildup of greenhouse gases and global dimming from aerosol emissions, are climate forcings of commonly opposite sign that complicate interpretations. Issues of effects on the hydrological cycle are paramount, especially in South and East Asia where billions of people live. Most simply, climate warming alone could lead to melting away of small glaciers, with concomitant decrease in vital melt waters downstream. But increased heating over oceans could lead similarly to greater evaporation and increased monsoonal precipitation over land, thus potentially leading to glacier growth. Similarly, certain aerosols can absorb solar radiation and increase warming, while others reflect incoming solar radiation, or increase cloud cover to cool the Earth’s surface. Increased clouds can increase precipitation, but aerosol-induced clouds have smaller droplets that reduce precipitation. Thus, strong questions of the direction of future change exist that must be addressed by robust research and new methods of data collection.

The Himalaya, the so-called ‘water towers’ of Asia, is marked by a great paucity of primary data collection points that can be used for predicting future trends. The Chinese government, however, has recently established the world’s highest climate station, at an altitude of 5200 m, on the Tibetan side of Mount Everest (Qomolangma in Chinese; Sagarmatha in Nepali). Forty more automatic and satellite-linked weather stations across Tibet will aid greatly in data collection across this roof of the world. Coupled with the new data-collecting sites described in the volume herein, much better forecasting tools will become available. But because of the state of adversity between India and Pakistan, hydrological forecasting south of the Himalayan chain is regarded as a classified strategic asset by both countries. This short-sighted treatment of what would normally be treated as the common resource heritage of humankind is
a reflection of only some of the difficulties faced by scientists in the region. As the competition for water heats up in this new century the reshaping of national economies and new geopolitical alliances will likely result. Thus, the importance of research in mountains as witness of global change could not be greater. It is the business of this book to offer some insights to facilitate such inquiries.

This book is divided into the five main sections that were the divisions of the conference in Rome sponsored by the Government of Italy in November 2005; atmospheric brown clouds (ABC), the Italian Ev–K²–CNR Committee in Project ABC, SHARE – Asia (Stations at High Altitude for Research on the Environment of Asia) scientific fields of atmospheric physics and chemistry, and global change, environmental indicators of global changes, and commitments to environmental monitoring at altitude in Asia. The 35 papers presented here are by some of the scientists who are expert in various aspects of the high-altitude environments of South Asia and elsewhere. Several of the papers are presented only as abstracts because their authors chose not to contribute longer versions of their work; we included these for a sense of completeness from the original conference.

The overall impression one is left with after reading over these works is that impressive understandings of environmental changes in the mountains of South Asia and elsewhere in the world have been acquired, but that far more needs to be done. Issues of atmospheric pollution, changes to alpine lakes, shrinking glaciers, diminishing water supplies, and other related problems are clearly presented in these papers. The future may be grim for some people in the mountains of the world unless attention is brought to bear upon some of these problematic issues and solutions sought.

Like the proverbial canary in the coal mine, the harsh environments of high alpine terrains are quite delicate enough to show changes as a kind of natural early-warning system, have we but the wit to observe and understand such changes as they happen. By dint of careful long-term monitoring, we scientists of the mountains of the world hope to alert the world’s people of imminent problems associated with such areas. As one reads through these papers, one may see how the problems are being studied at present, and perhaps one may be helped to greater awareness of possible solutions to problems that are developing. The wider this information is disseminated, the more pointed the future research can become, as people become aware of possibilities. We offer this latest volume in our book series on Developments in Earth Surface Processes as state-of-the-art surficial geoscience in South Asia and a few other mountain areas in hopes that others will be drawn to continue such studies in the magnificent, but changing, Himalaya and other mountains of the world.

John F. Shroder, Jr.
Editor-in-Chief

Developments in Earth Surface Processes
Preface

From an environmental point of view, mountains are particularly sensitive and important for monitoring the state of health of our planet. Only through distribution of meteorological climatological and atmospheric composition monitoring points in mountain regions, coupled with modeling simulations, will we be able to thoroughly analyze complex pollutant transport mechanisms and better understand imminent global changes. The Himalaya–Karakoram Range, because of its elevation and geographic location, represents one of the ideal places for studying long-range pollutant transport systems on a regional scale and for monitoring changes induced by mechanisms that act on a global scale through monsoon circulation.

The Ev–K²–CNR Committee promotes interdisciplinary remote-area research in environmental and the earth sciences. Recently, it launched the project SHARE – Asia (Stations at High Altitude for Research on the Environment in Asia) for development of an integrated system of measurements that will contribute to increasing general scientific knowledge on climatic and pollution-related processes while helping build local capacity for monitoring the relevant phenomena. SHARE – Asia currently includes the Pyramid Meteo Network (PMN), a climate monitoring network founded in 1994 by the Ev–K²–CNR Committee, comprising six stations installed in Nepal’s Sagarmatha National Park (SNP), and two stations in Pakistan on the Baltoro Glacier.

The meeting that generated the papers in this volume was held in Rome on 16–17 November 2005. It was organized by the Ev–K²–CNR Committee and promoted by the Italian National Research Council (CNR) in collaboration with the Italian National Mountain Institute (IMONT). The purpose of the meeting and this book is to highlight the uniqueness of the scientific work of Ev–K²–CNR in important international projects like Coordinated Enhanced Observing Period (CEOP), Atmospheric Brown Clouds (ABC), International Global Atmospheric Chemistry (IGAC), Global Atmospheric Watch (GAW), and Global Land Ice Measurements from Space (GLIMS).

The Ev–K²–CNR Committee thus aims to create a unique opportunity for dialogue between major environmental scientists and experts, highlighting the close relationship between diverse themes with a common thread: in-depth comprehension of the environmental phenomena that are determining the health of our planet.

Renato Baudo, Gianni Tartari and Elisa Vuillermoz
Editors
Contents

Foreword v
Preface vii
Acknowledgments xiii
List of Corresponding Authors xv
List of Acronyms xix

1. Introduction 1
 \textit{Angelo Guerrini, Agostino Da Polenza and Harald Egerer}

Atmospheric Brown Clouds (ABC)

2. Global and regional climate change: the next few decades 9
 \textit{Veerabhadran Ramanathan}

3. Does aerosol weaken or strengthen the Asian monsoon? 13
 \textit{William K.M. Lau and Kyu-Myong Kim}

4. Global retrieval of aerosol properties from sources to sinks by MODIS 23
 \textit{Nai-Yung Christina Hsu}

5. Radiation, aerosol joint observations – monsoon experiment in Gangetic-Himalayan area (RAJO-MEGHA): synergy of satellite-surface observations 25
 \textit{Si-Chee Tsay and Brent N. Hollen}

6. Contribution of the WMO global atmosphere watch to high mountain atmospheric chemistry observations 27
 \textit{Leonard A. Barrie}

Ev-K2-CNR in Project ABC

7. From Himalaya to Karakoram: the spreading of the project Ev-K2-CNR 33
 \textit{Renato Baudo, Beth Schommer, Chiara Belotti and Elisa Vuillermoz}

8. SHARE-Asia contributions to ABC research 51
 \textit{Gianni Tartari}

9. Merging regional and global chemistry, air quality, and global change: SHARE-Asia in the context of the IGAC project 59
 \textit{Sandro Fuzzi}
10. The ABC-Pyramid: a scientific laboratory at 5079 m a.s.l. for the study of atmospheric composition change and climate

Paolo Bonasoni, Paolo Laj, Ubaldo Bonafè, Francescospiero Calzolari, Paolo Christofanelli, Angela Marinoni, Fabrizio Roccato, Maria Cristina Facchini, Sandro Fuzzi, Gian Paolo Gobbi, Jean-Marc Pichon, Hervé Venzac, Karine Sellegri, Paolo Villani, Michela Maione, Igor Arduini, Andreas Petzold, Michael Sprenger, Gian Pietro Verza and Elisa Vuillermoz

11. The Ev-K²-CNR Pyramid and the AERONET network (Himalayan atmospheric brown cloud characterization via sunphotometer observations)

Gian Paolo Gobbi, Federico Angelini, Francesca Barnaba and Paolo Bonasoni

SHARE-Asia Scientific Fields: Atmospheric Physics & Chemistry, & Global Change

12. Global earth observation system of systems and the coordinated enhanced observing period high altitude observatories

Toshio Koike

13. The coordinated enhanced observing period (CEOP) report: integrated data systems in the study of the water cycle in Asia

Sam Benedict

14. Verification of numerical model forecasts of precipitation and satellite-derived rainfall estimates over the Indian region: monsoon 2004

Laura Bertolani and Raffaele Salerno

15. Circulation and relationship between pollutant sources and atmospheric composition in the Himalayan region

Giuseppe Calori, Gregory R. Carmichael, Domenico Anfossi, Pietro Malguazzi and Silvia Trini Castelli

16. Italian air force observatory network for environmental and meteorological monitoring: from data control to quality assurance

Fabio Malaspina, Francesco Foti and Emanuele Vuerich

17. Climate change in Italy: an assessment of data and reanalysis models

Raffaele Salerno, Mario Giuliani and Laura Bertolani

18. Climate changes and mountains

Giovanni Kappenberger

SHARE-Asia Scientific Fields: Environmental Indicators of Global Changes

19. Global scale atmospheric pollution: a regional problem

Ivo Allegrini and Nicola Pirrone

20. Platinum group elements and other trace elements in high altitude snow and ice

Giulio Cozzi, Carlo Barbante and Paolo Cescon
21. High altitude lakes: limnology and paleolimnology 155
Andrea Lami, Gabriele A. Tartari, Simona Musazzi, Piero Guilizzoni,
Aldo Marchetto, Marina Manca, Angela Boggero, Anna M. Nocentini,
Giuseppe Morabito, Gianni Tartari, Licia Guzzella, Roberto Bertoni
and Cristiana Callieri

22. Elemental characterization of Himalayan airborne particulate
matter collected at 5100 m a.s.l 171
Enrico Rizzio, Giuseppe Giaveri, Luigi Bergamaschi, Antonella Profumo,
Gianni Tartari and Mario Gallorini

23. Interactions between solar ultraviolet radiation and
climatic warming in alpine lakes 185
Ruben Sommaruga

24. Global land ice monitoring from space (GLIMS) project
regional center for Southwest Asia (Afghanistan and Pakistan) 187
John F. Shroder Jr., Michael P. Bishop, Henry N.N. Bulley,
Umesh K. Haritashya and Jeffrey A. Olsenholler

25. Remote sensing and GIS for alpine glacier change detection
in the Himalaya 209
Michael P. Bishop, John F. Shroder Jr., Umesh K. Haritashya
and Henry N.N. Bulley

26. Ongoing variations of Himalayan and Karakoram glaciers as witnesses
of global changes: recent studies of selected glaciers 235
Claudio Smiraglia, Christoph Mayer, Claudia Mihalcea,
Guglielmina Diolaiuti, Marco Belò and Giorgio Vassena

27. Changing climates, changing lives: strengthening adaptive response
capacities to climate change in the Huascaran Biosphere Reserve,
Peru, and Sagarmatha (Mt. Everest) National Park, Nepal 249
Alton C. Byers

28. Chemical composition of fresh snow in the Himalaya and Karakoram
Stefano Polesello, Michele Comi, Licia Guzzella, Angela Marinoni,
Massimo Pecci, Claudio Roscioli, Claudio Smiraglia, Gianni Tartari,
Paola Teti, Sara Valsecchi and Elisa Vuillermoz

29. Shrinking cryosphere in South Asia 263
Syed Iqbal Hasnain

SHARE-Asia Scientific Partners: Commitments to High-Altitude
Environmental Monitoring in Asia

30. The third pole of the planet: the Mountain Research Initiative 275
Gregory B. Greenwood

31. Global changes and sustainable development in the Hindu
Kush–Karakoram–Himalaya 281
Bidya Banmali Pradhan and Basanta Shrestha

32. Climate research in the Nepal Himalaya 291
Saraju K. Baidya
33. Development of a mesoscale convective system over the foothills of the Himalaya into a severe storm
 Qamar-uz-Zaman Chaudhry and Ghulam Rasul
 301

34. Study of land surface heat fluxes and water cycle over the Tibetan plateau
 Yaoming Ma, Tandong Yao, Hirohiko Ishikawa and Toshio Koike
 313

35. Research on global changes in Pakistan
 Rakhshan Roohi
 329

Index
 341
Acknowledgments

The Promoting Committee of SHARE – Asia that initiated and guided the Rome meeting and this subsequent book consisted of Honorary President F. Pistella, who is president of CNR, the Italian National Research Council. The president of the Promoting Committee was G. Arnoldi, who was also the vice president of the Italian Parliament Group, “Friends of the Mountains.” In addition, the Promoting Committee also included A. Da Polenza, president of the Ev-K2-CNR Committee, G. Deodato, director of the Italian Development Corporation, and E. Mensi, president of the Italian National Mountain Institute (IMONT).

The Scientific Committee that guided the Rome meeting and this resulting book consisted of R. Passino, president of the Earth and Environment Department of CNR, B. Banmali Pradhan of the International Centre for Integrated Mountain Development (ICIMOD) from Kathmandu, Nepal, L. Barrie from the Global Atmosphere Watch (GAW) of the World Meteorological Organization from Geneva, Switzerland, R. de Bernardi (CNR-ISE), S. Fuzzi (CNR-ISAC/IGAC), T. Koike from the University of Tokyo who is the head of the Coordinated Enhanced Observing Period (CEOP), under the framework of the World Climate Research programme (WCRP), W. Lau, (NASA – Goddard Space Flight Center), F. Prodi (CNR-ISAC), V. Ramanathan (Scripps Institute of Oceanography), and G. Tartari (CNR-IRSA/Ev-K2-CNR).

The Organizing Committee that made everything happen in an orderly fashion was headed by Coordinator R. Baudo (CNR-ISE), who was assisted by A. Lami (CNR-ISE), B. Schommer (Ev-K2-CNR Committee), and F. Sernia (CNR – Headquarters).

We thank all who attended the meetings in Rome and who contributed their technical and organizational efforts to make the meeting and this book come to fruition. Without the direct help of the legions of people who were involved in all these processes, such productive meetings and useful scientific volumes would not be possible.

The Editors
This page intentionally left blank
List of Corresponding Authors

Ivo Allegrini
CNR – Institute for Atmospheric Pollution, Rome, Italy, allegrini@iia.cnr.it

Saraju K. Baidya
Department of Hydrology and Meteorology, Kathmandu, Nepal, sarjo@dhm.gov.np

Leonard A. Barrie
Environmental Division, World Meteorological Organization, Geneva, Switzerland, LBarrie@wmo.int

Renato Baudo
CNR – Institute of Ecosystem Study, Verbania Pallaza, Italy, r.baudo@ise.cnr.it

Sam Benedict
CEOP International Coordinator, Coronado, USA, sam.benedict@gewex.org

Laura Bertolani
Epson Meteo Centre, Research and Development Division, Cinisello Balsamo, Milan, Italy, laura.bertolani@epson-meteo.org

Michael P. Bishop
Department of Geography and Geology, University of Nebraska at Omaha, Omaha, USA, mpbishop@mail.unomaha.edu

Paolo Bonasoni
CNR – Institute for Atmospheric Sciences and Climate, Bologna, Italy, p.bonasoni@isac.cnr.it

Alton C. Byers
Research and Education, The Mountain Institute, Elkins, USA, abyers@mountain.org

Giuseppe Calori
ARIANET, Milan, Italy, g.calori@aria-net.it

Giulio Cozzi
CNR – Institute for the Dynamics of Environmental Processes, University of Venice, Venice, Italy, cozzig@unive.it

Agostino Da Polenza
Ev-K²-CNR Committee, Bergamo, Italy, evk2cnr.org@evk2cnr.org

Harald Egerer
UNEP Vienna – Interim Secretariat of the Carpathian Convention, Vienna, Austria, harald.Egerer@unvienna.org
List of Corresponding Authors

Sandro Fuzzi Institute for Atmospheric Sciences and Climate, National Research Council (CNR), Bologna, Italy, s.fuzzi@isac.cnr.it

Mario Gallorini National Institute of Metrological Research (I.N.R.I.M), Unit of Radiochemistry and Spectroscopy c/o University of Pavia, Pavia, Italy, gallorini@unipv.it

Gian Paolo Gobbi CNR – Institute for Atmospheric Sciences and Climate, Rome, Italy, g.gobbi@isac.cnr.it

Gregory B. Greenwood Mountain Research Initiative, Bern, Switzerland, greenwood@scnat.ch

Angelo Guerrini, General Director, Italian National Research Council (CNR), Rome, Italy

Syed Iqbal Hasnain HIGH ICE, New Delhi, India, iqbalhasnain@hotmail.com

Nai-Yung Christina Hsu NASA Goddard Space Flight Center, Greenbelt, USA, hsu@climate.gsfc.nasa.gov

Giovanni Kappenberger MeteoSwiss, Locarno Monti, Switzerland, giovanni.kappenberger@meteoswiss.ch

Toshio Koike University of Tokyo, Tokyo, Japan, tkoike@hydra.t.u-tokyo.ac.jp

Andrea Lami CNR – Institute for Ecosystem Study, Verbania – Pallanza, Italy, a.lami@ise.cnr.it

William K. M. Lau Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, USA, lau@climate.gsfc.nasa.gov

Yaoming Ma Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, ymmad@itpcas.ac.cn

Fabio Malaspina Department for Aeronautical Meteorology Experimentations, Italian Air Force (Re.S.M.A.), Bracciano, Rome, Italy, f.malaspina@meteoam.it

Stefano Polesello Water Research Institute, Italian National research Council (IRSA–CNR), Brugherio, (MI), Italy, polesello@irsa.cnr.it

Bidya Banmali Pradhan International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal, bbanmali@icimod.org

Veerabhadran Ramanathan Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA, vram@fiji.ucsd.edu
List of Corresponding Authors

Ghulam Rasul Meteorological Service of Pakistan, Islamabad, Pakistan, grmet@yahoo.com

Rakhshan Roohi Water Resources Research Institute, National Agricultural Research Center, Islamabad 45500, Pakistan, drroohi_gis@yahoo.com

Raffaele Salerno Epson Meteo Centre, Research and Development Division, Cinisello Balsamo, Milan, Italy, raffaele.salerno@epson-meteo.org

John F., Shroder Jr. Department of Geography and Geology, University of Nebraska at Omaha, Omaha, USA, jshroder@mail.unomaha.edu

Claudio Smiraglia “Ardito Desio” Earth Sciences Department, University of Milan, Milan, Italy, claudio.smiraglia@unimi.it

Ruben Sommaruga Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Innsbruck, Austria, ruben.sommaruga@uibk.ac.at

Gianni Tartari CNR – Water Research Institute, Brugherio and Ev-K2-CNR Committee, Bergamo, Italy, tartari@irsa.cnr.it

Si-Chee Tsay NASA Goddard Space Flight Center, Greenbelt, USA, si-chee.tsay-1@nasa.gov

Elisa Vuillermoz Ev-K2-CNR Committee, Bergamo, Italy, elisa.vuillermoz@evk2cnr.org
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DDA</td>
<td>Four-dimensional data analyses</td>
</tr>
<tr>
<td>AAR</td>
<td>Accumulation area ratio</td>
</tr>
<tr>
<td>ABC</td>
<td>Atmospheric Brown Clouds Project</td>
</tr>
<tr>
<td>ABL</td>
<td>Atmospheric boundary layer</td>
</tr>
<tr>
<td>AERONET</td>
<td>Aerosol robotic network</td>
</tr>
<tr>
<td>AGAGE</td>
<td>Advanced Global Atmospheric Gases Experiment</td>
</tr>
<tr>
<td>AGU</td>
<td>American Geophysical Union</td>
</tr>
<tr>
<td>AL:PE</td>
<td>Acidification of mountain lakes: palaeolimnology and ecology</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural networks</td>
</tr>
<tr>
<td>AOC</td>
<td>Advisory and Oversight Committee</td>
</tr>
<tr>
<td>AOD</td>
<td>Aerosol optical depth</td>
</tr>
<tr>
<td>AOT</td>
<td>Aerosol optical thickness</td>
</tr>
<tr>
<td>APN</td>
<td>Asia-Pacific Network for Global Change</td>
</tr>
<tr>
<td>ASM</td>
<td>Asian summer monsoon</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Spaceborne Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>AWSs</td>
<td>Automatic weather stations</td>
</tr>
<tr>
<td>BANG</td>
<td>Bangladesh</td>
</tr>
<tr>
<td>BCR</td>
<td>Community Bureau of Reference</td>
</tr>
<tr>
<td>BENG</td>
<td>West Bengal</td>
</tr>
<tr>
<td>BHUT</td>
<td>Bhutan</td>
</tr>
<tr>
<td>BIHA</td>
<td>Bihar and Jharkhand</td>
</tr>
<tr>
<td>BMRC</td>
<td>Bureau of Meteorology Research Centre</td>
</tr>
<tr>
<td>BOB</td>
<td>Bay of Bengal</td>
</tr>
<tr>
<td>BR</td>
<td>Biosphere reserve</td>
</tr>
<tr>
<td>BS</td>
<td>Bias score</td>
</tr>
<tr>
<td>BTC</td>
<td>Bilateral Technical Committee</td>
</tr>
<tr>
<td>CACGP</td>
<td>Commission on Atmospheric Chemistry and Global Pollution</td>
</tr>
<tr>
<td>CALIPSO</td>
<td>Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation</td>
</tr>
<tr>
<td>CAMP</td>
<td>CEOP (Coordinated Enhanced Observing Period) Asian–Australia Monsoon Project</td>
</tr>
<tr>
<td>CCCM</td>
<td>Canadian Climate Centre Model</td>
</tr>
<tr>
<td>CDA</td>
<td>CEOP (Coordinated Enhanced Observing Period) Central Data Archive</td>
</tr>
<tr>
<td>CEM</td>
<td>Epson Meteo Centre</td>
</tr>
</tbody>
</table>